Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons.

Similar presentations


Presentation on theme: "Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons."— Presentation transcript:

1 Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons en Champagne

2 2/61 Basic equations or I Equilibrium equations (static) + boundary conditions strong (local) weak (global) II Constitutive equations (elasticity) III Kinematic equations (small strains/displacements)

3 3/61 The Virtual Fields Method (VFM) Basic idea Eq. I (weak form, static) Substitute stress from Eq. II

4 4/61 The Virtual Fields Method (VFM) valid for any kinematically admissible virtual fields For each choice of virtual field: 1 equation Choice of as many VF as unknowns: linear system Inversion: unknown stiffnesses Elasticity: direct solution to inverse problem !

5 5/61 Simple example Fuuny shaped disc in diametric compression Isotropic material -F/2 F y x Eps y Eps x Eps s

6 6/61 1 st virtual field: virtual compression field -F/2 F y x

7 7/61 -F/2 F y x

8 8/61 Homogeneous material Assumption: strain field uniform through the thickness Measurement: uniform strain over a « pixel » (N « pixels ») -F/2 F y x

9 9/61 « Pixels » are of same area: Average strain Finally: -F/2 F y x

10 10/61 Virtual work of external forces Contribution of point A Coordinates of A: -F/2 F y x A B C

11 11/61 Contribution of point B Coordinates of B: Finally -F/2 F y x A B C L h

12 12/61 1 st virtual field: uniform diametric compression 2 nd virtual field: transverse swelling -F/2 F y x A B C

13 13/61 Finally -F/2 F y x Direct solution to inverse problem !!!

14 14/61 Principal advantages Independent from stress distribution Independent from geometry Direct identification (no updating) Limitations Kinematic assumption through the thickness (plane stress, plane strain, bending...) y F -F x A B

15 15/61 Anisotropic elasticity Example 2 Orthotropic material

16 16/61 Choice of the virtual fields 1. Measurement on S 2 only (optical system) Over S 1 and S 3 : (rigid body) 2. A priori choice: over S 1 :

17 17/61 Unknown force distribution over S 1 and S 3. Resultant P measured 3. Over S 3 (rigid body) : 2 possibilities 3.1 3.2 tyityi txitxi

18 18/61 tyityi txitxi No information on t x Distribution t y unknown Filtering capacity of the VF

19 19/61 4. Continuity of the virtual fields Conditions over S 2 Virtual strain field discontinuous Choice of 4 virtual fields at least: example

20 20/61 Over S 2 Over S 3 k = -L Uniform virtual shear y x

21 21/61 Plane stress Plane orthotropic elasticity Homogeneous material 0dSTudV V * V * ij   

22 22/61 y x Field n°2: Bernoulli bending Sur S 2 Sur S 3 k = -L 3

23 23/61 Field n°3: Global compression Over S 2 Sur S 3 k = 0 y x

24 24/61 Field n°4: Local compression Over A 1 Over S 3 k = 0 y x Over A 2

25 25/61 Field n°4: Local compression

26 26/61 Final system AQ = B Q = A -1 B If VF independent !! Pierron F. et Grédiac M., Identification of the through-thickness moduli of thick composites from whole-field measurements using the Iosipescu fixture : theory and simulations, Composites Part A, vol. 31, pp. 309-318, 2000.

27 27/61 Experimental examples in linear elasticity

28 28/61 Unnotched Iosipescu test Material: 0° glass-epoxy (2.1 mm thick)

29 29/61 Polynomial fitting Noise filtering, extrapolation of missing data Displacements in the undeformed configuration Raw data Polynomial fitting Residual

30 30/61 Strain fields Smooth fields local differentiation FE

31 31/61 Identification: stiffness 6 specimens P = 600 N Reference (GPa) 44.912.23.683.86 Coeff. var (%) 0.72.87.32.4 Identified (GPa) 39.7 6.6 10.4 23 3.65 2.4 3.03 13 Coeff. var (%) Predicted by VFM routine

32 32/61 Through thickness stiffnesses of thick UD glass/epoxy composite tubes Optimized position of measurement area R. Moulart Master thesis Ref. 10

33 33/61 Deformation maps

34 34/61 Strain maps Polynomial fit, degree 3, transform to cylindrical and analytical differentiation

35 35/61 Strain maps

36 36/61 Strain maps

37 37/61 Reference* (GPa) 104043 Identification results Identified (GPa) 11.444.46.83.87 Coeff. var (%) – 5 tests 87666959 Problem: not an in-plane test !!! * Typical values

38 38/61 Problem with thick ring compression test

39 39/61 Problem with thick ring compression test Solution: back to back cameras

40 40/61 Set-up with two cameras

41 41/61 Results Reference* (GPa) 104043 Identified (GPa) 11.445.46.782.62 Coeff. var (%) – 9 tests 2910429 Moulart R., Avril S., Pierron F., Identification of the through-thickness rigidities of a thick laminated composite tube, Composites Part A: Applied Science and Manufacturing, vol. 37, n° 2, pp. 326-336, 2006.


Download ppt "Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons."

Similar presentations


Ads by Google