Presentation is loading. Please wait.

Presentation is loading. Please wait.

PVDIS baffle,trigger and rate Zhiwen Zhao 2013/09/10 2014/11/04.

Similar presentations


Presentation on theme: "PVDIS baffle,trigger and rate Zhiwen Zhao 2013/09/10 2014/11/04."— Presentation transcript:

1 PVDIS baffle,trigger and rate Zhiwen Zhao 2013/09/10 2014/11/04

2 More1 trig trig_eff(P>6GeV) = trig_eff(P=6GeV) trig_eff_Proton = 0.5*trig_eff_pion P<1GeV, there are two methods 2 high low 3.8 3.5 2.5 2.0 1.5 Assumption

3 More1 block trig 3 high low 3.8 3.5 2.5 2.0 1.5 trig_eff(P>6GeV) = trig_eff(P=6GeV) trig_eff_Proton = 0.5*trig_eff_pion P<1GeV, there are two methods Assumption

4 How to read the rate table on next slide All rate are in kHz All rate on whole EC plane, divide by 30 to get sector rate Top section is without trig cut, bottom section is with trig cut Rate has distribution over phi angle every 12 degree, we take 0-6 degree as high rate area and 6-12 degree as low rate area. The full rate area includes both 4

5 Rate (kHz) More1 block(more1 block trig) More1 (more1 trig) fullHighLowfullHighLow e (W>2) kry 413149265469205264 π-π- Kry 5.29e44.11e41.19e4 lead 5.08e52.72e52.36e55.45e53.15e52.30e5 π+π+ Kry 2.27e41.00e41.27e4 lead 2.13e50.98e51.15e52.13e51.04e51.08e5 γ(π0)γ(π0) kry 5.06e3 01.20e6 0 lead 8.44e74.16e74.28e77.51e73.37e74.14e7 p Kry 3.65e31.80e31.85e3 lead 5.50e42.38e43.12e45.49e42.65e42.84e4 Total (lead) e (W>2) kry 31180231359128231 π-π- Kry lead 5.88e33.80e32.08e31.37e41.17e41.93e3 π+π+ Kry lead 0.57e30.19e30.38e31.54e31.18e30.36e3 γ(π0)γ(π0) kry 2.1 01.23e4 0 lead 26 01.31e4 0 p Kry lead 0.24e30.12e3 0.61e30.45e30.16e3 Total (lead) 7.03e34.22e32.81e32.93e42.66e40.27e4 5 Method 1 trig_eff(P<0.5GeV) = 0 trig_eff(0.5<P<1GeV) = 0.5*trig_eff(P=1GeV) Method 1 trig_eff(P<0.5GeV) = 0 trig_eff(0.5<P<1GeV) = 0.5*trig_eff(P=1GeV)

6 Rate (kHz) More1 block(more1 block trig) More1 (more1 trig) fullHighLowfullHighLow e (W>2) kry 413149265469205264 π-π- Kry 5.29e44.11e41.19e4 lead 5.08e52.72e52.36e55.45e53.15e52.30e5 π+π+ Kry 2.27e41.00e41.27e4 lead 2.13e50.98e51.15e52.13e51.04e51.08e5 γ(π0)γ(π0) kry 5.06e3 01.20e6 0 lead 8.44e74.16e74.28e77.51e73.37e74.14e7 p Kry 3.65e31.80e31.85e3 lead 5.50e42.38e43.12e45.49e42.65e42.84e4 Total (lead) e (W>2) kry 31180231359128231 π-π- Kry lead 4.83e33.43e31.40e31.08e49.34e31.41e3 π+π+ Kry lead 0.28e30.11e30.17e30.62e30.44e30.18e3 γ(π0)γ(π0) kry lead 4404.72e3 0 p Kry lead 0.18e30.10e30.08e30.44e30.32e30.12e3 Total (lead) 5.61e33.72e31.88e31.69e41.50e40.19e4 6 Method 2 trig_eff(P<1GeV) = 0 The trig rate in this low energy region is estimated separately. Method 2 trig_eff(P<1GeV) = 0 The trig rate in this low energy region is estimated separately.

7 Max sector DAQ rate 65kHz, if it’s 30kHz then, it cost 2.1M$ less, 20kHz for 3.7M$ less according to Alex’s DAQ talk in May 2013 Collaboration meeting. Cherenkov will help to reject trigger from hadrons background (random trigger) with 30ns window, but it has no effect on true electron Trigger rate per sector Radom trigger per sector (method 2) ((4.83e3+0.28e3+4+0.18e3)+0.1e3*30)*2e6*30e-9/30=16.6kHz True electron trigger per sector 311/30= 10.4 kHz Total 16.6+10.4=27kHz Method 2 should give better estimation Trigger Rate Summary 7

8 Err_Apv(%) x0.20- 0.30 0.30- 0.35 0.35- 0.40 0.40- 0.45 0.45- 0.50 0.50- 0.55 0.55- 0.60 0.60- 0.67 0.67- 0.80 More1 Before trig cut 0.2620.2840.2750.2860.3140.3540.4270.4680.641 More1 after trig cut 0.3640.3150.2830.2880.3140.3540.4270.4680.641 More1 block before trig cut 0.2900.3040.2870.2940.3190.3560.4270.4680.641 More1 block after trig cut 0.4220.3330.2940.2960.320.3560.4280.4680.641 8 Assume 21-36 degree, EC R(110,250)cm nominal acceptance Assume 50uA, 40cm LD2 Pol_beam 85%, 120 days

9 From background embedding From trigger turn on curve  Embedding bgd stochastically according to its 3D distribution  Look for percentage of 30ns trigger window that pass trigger threshold  Good for low energy background pile ups  Can not handle rare events due to stat. limit  Handle p<1GeV background particle trigger  Embedding bgd stochastically according to its 3D distribution  Produce trigger turn on curve for high energy particle  Good for rare events, e.g. DIS  Can not handle low energy particle dominated trigger, which is non-linear  Handle p>1GeV particle dominated trigger EC group Internal Communication Jin Huang 9

10  Place a calorimeter 6+1 cluster at given reference radius location  Assume a 30ns trigger integration window, stochastically simulate which bgd particle would fly into calorimeter ◦ including e/gamma/pi+/-/0/proton, 1keV – 1GeV ◦ Particle with P>1GeV is ignored in this case, since their trigger rate should be counted in high energy trigger curve x rate study  Simulate scintillator energy deposition in the shower part for all these particle and sum to give a trigger signal  Repeat for 60k times, check the probability to produce a trigger. Trigger threshold set according to the radius  Multiply by number of trigger channels and get the total low energy trigger rate EC group Internal Communication Jin Huang 10

11  For low radiation slice at R=230 cm, trigger threshold is ◦ scintillator energy > 283 MeV ◦ targeted high trigger efficiency for electron with E>1.5 GeV  9 out of 60k simulations produced a trigger EC group Internal Communication Jin Huang 11 n_* : number of that particle for 30ns window sh_*: shower scintillator energy deposition for that particle species ************************************************************************************************************************************ * Row * n_elec * sh_elec * n_gamma * sh_gamma * n_gamma_p * sh_gamma_ * n_pip * sh_pip * n_pim * sh_pim * ************************************************************************************************************************************ * 5116 * 0 * 0 * 11 * 1.4133610 * 4 * 0.8096210 * 0 * 0 * 1 * 287.67065 <- Pi- dominated * 10508 * 0 * 0 * 13 * 0 * 10 * 17.858110 * 0 * 0 * 1 * 272.90136 * * 12082 * 0 * 0 * 13 * 1.1497589 * 5 * 3.1542911 * 1 * 328.03814 * 0 * 0 <- Pi+ dominated * 26961 * 0 * 0 * 15 * 0 * 9 * 13.370458 * 0 * 0 * 1 * 277.56695 * * 31170 * 0 * 0 * 18 * 3.771492 * 4 * 3.6389594 * 0 * 0 * 1 * 301.99948 * * 37962 * 0 * 0 * 12 * 0 * 2 * 0 * 0 * 0 * 2 * 315.43313 * * 40813 * 0 * 0 * 20 * 10.953822 * 6 * 12.016947 * 0 * 0 * 1 * 266.20440 * * 42284 * 1 * 0 * 13 * 1.1786102 * 5 * 1.1385887 * 1 * 82.557189 * 1 * 216.75323 <- two pion pile up * 42872 * 0 * 0 * 16 * 0.9754827 * 4 * 0 * 0 * 0 * 1 * 285.33731 * ************************************************************************************************************************************

12 EC group Internal Communication Jin Huang 12  Sum = 0.10 ± 0.2 MHz per sector ◦ Statistical precision can be improved with more simulation ◦ Ignored correlation between neighboring trigger channels -> over estimate  Dominated by radius region R~230cm, where trigger threshold is low (E target =1.5GeV) High radiation phi slice Low radiation phi slice

13 EC photon block EC module R(110,265)cm EC photon block (“more1 block”) – 30 of them – R(110-200)cm – Start from 2.2 degree and width 2.5 degree. (They can be further optimized) – 5cm(8*X 0 ) thick lead, hope to reduce photon energy by 1 order EC module reduction about 180, 10% of total 13

14 Rate of More1 14 e(DIS) Kry γ(pi0) Kry γ(pi0) lead γ(EM) lead

15 Rate of More1 block 15 e(DIS) Kry γ(pi0) Kry γ(pi0) lead γ(EM) lead

16 γ(EM) lead rate of more1 and more1 block 16

17 Rate before and after trig cut (More1 with more1 trig) Next slide shows the cut effect in “log(Ek) vs R” 17 high low Method 1

18 Rate before and after trig cut (More1 block with more1 trig) Next slide shows the cut effect in “log(Ek) vs R” 18 high low Method 1

19 19 Low, Before cut Low, After cut High, After cut e DISpi-pi+γ(pi0)p More1 with More1 trig More1 with More1 trig high, Before cut Method 1

20 20 Low, Before cut Low, After cut High, After cut e DISpi-pi+γ(pi0)p More1 block with More1 block trig More1 block with More1 block trig high, Before cut Method 1

21 Rate vs R (more1 with more1 trig, lead) R(cm) highlow 100-116116-124124-165165-205205-265100-116116-124124-165165-205205-265 eDIS 1.38E+013.16E+018.90E+015.58E+011.53E+013.38E+017.18E+011.31E+022.35E+013.50E+00 π-π- 1.24E+043.27E+041.42E+058.42E+044.47E+041.16E+042.42E+041.04E+056.17E+042.87E+04 π+π+ 5.26E+031.19E+045.15E+042.29E+041.26E+046.52E+031.19E+044.63E+043.04E+041.32E+04 γ(π0)γ(π0) 1.08E+063.38E+061.29E+079.51E+066.91E+061.08E+063.14E+061.37E+071.31E+071.04E+07 p 7.53E+022.64E+031.22E+046.91E+033.92E+031.13E+032.62E+031.49E+046.03E+033.75E+03 total 1.10E+063.43E+061.31E+079.62E+066.97E+061.10E+063.18E+061.39E+071.32E+071.04E+07 eDIS 3.77E+001.39E+015.93E+013.64E+011.48E+012.45E+015.61E+011.24E+022.28E+013.34E+00 π-π- 3.12E+021.43E+036.09E+031.91E+032.01E+031.52E+011.29E+027.73E+023.99E+026.13E+02 π+π+ 4.07E+011.55E+027.13E+021.66E+021.08E+022.47E+002.09E+011.08E+029.51E+011.30E+02 γ(π0)γ(π0) 9.83E+023.14E+038.69E+032.97E+020.00E+00 p 9.09E+004.24E+012.66E+027.99E+015.36E+013.54E-015.25E+004.27E+014.51E+016.15E+01 total 1.35E+034.78E+031.58E+042.49E+032.19E+034.25E+012.11E+021.05E+035.62E+028.08E+02 21 Method 1

22 Rate vs R (more1 block with more 1 block trig, lead) R(cm) highlow 100-116116-124124-165165-205205-265100-116116-124124-165165-205205-265 eDIS 1.10E+012.49E+016.69E+013.04E+011.53E+013.39E+017.19E+011.32E+022.35E+013.49E+00 π-π- 1.30E+042.90E+041.18E+056.73E+044.43E+049.58E+033.14E+041.02E+055.61E+043.66E+04 π+π+ 4.65E+031.13E+044.79E+042.06E+041.37E+045.11E+031.38E+045.61E+042.74E+041.27E+04 γ(π0)γ(π0) 2.23E+066.26E+061.84E+077.83E+066.90E+061.20E+063.48E+061.44E+071.32E+071.04E+07 p 1.30E+032.46E+031.07E+045.59E+033.70E+031.30E+033.35E+031.58E+047.18E+033.62E+03 total 2.25E+066.30E+061.86E+077.92E+066.96E+061.22E+063.53E+061.46E+071.33E+071.05E+07 eDIS 1.01E+004.39E+003.75E+012.20E+011.49E+012.48E+015.55E+011.25E+022.29E+013.33E+00 π-π- 1.21E+022.03E+027.77E+028.18E+021.89E+031.63E+011.16E+027.53E+023.52E+028.43E+02 π+π+ 2.87E+011.59E+011.02E+015.67E+018.07E+015.94E+004.96E+011.03E+025.38E+011.67E+02 γ(π0)γ(π0) 4.36E+003.10E+000.00E+001.81E+010.00E+00 p 6.38E+006.97E+002.58E+012.81E+015.34E+011.37E+003.83E+003.37E+012.45E+015.19E+01 total 1.61E+022.33E+028.51E+029.43E+022.04E+034.84E+012.25E+021.01E+034.53E+021.07E+03 22 Method 1

23 Rate (kHz) More1 block(more1 trig)More1 (CLEO trig)More1 (more1 trig) fullHighLowfullHighLowfullHighLow e DIS kry 413148265469205264same π-π- Kry 5.29e44.11e41.19e4same lead 5.08e52.72e52.36e55.45e53.15e52.30e5same π+π+ Kry 2.27e41.00e41.27e4same lead 2.13e50.98e51.15e52.13e51.04e51.08e5same γ(π0)γ(π0) kry 5.06e3 01.20e6 0same lead 8.44e74.16e74.28e77.51e73.37e74.14e7same p Kry 3.65e31.80e31.85e3same lead 5.50e42.38e43.12e45.49e42.65e42.84e4same Total (lead) e DIS kry 335104231403145258359128231 π-π- Kry 5.22e34.00e31.22e3 lead 1.22e41.01e40.21e41.87e41.26e40.60e41.37e41.17e41.93e3 π+π+ Kry 000 lead 1.35e39703812.48e31.09e31.43e31.54e31.18e30.36e3 γ(π0)γ(π0) kry 2.3 03.22e4 01.23e4 0 lead 23011501.31e4 0 p Kry 000 lead 9274041209574754810.61e30.45e30.16e3 Total (lead) 1.45e41.17e40.28e45.34e44.59e40.75e42.93e42.66e40.27e4 23 Method 1


Download ppt "PVDIS baffle,trigger and rate Zhiwen Zhao 2013/09/10 2014/11/04."

Similar presentations


Ads by Google