Presentation is loading. Please wait.

Presentation is loading. Please wait.

Conformation-specific IR spectroscopy of cold Ac-Phe-(Ala)5-Lys-H+ Ac-Phe-(Ala)10-Lys-H+ Ac-Lys-Phe-(Ala)10-H+ Spectroscopic signatures of helix.

Similar presentations


Presentation on theme: "Conformation-specific IR spectroscopy of cold Ac-Phe-(Ala)5-Lys-H+ Ac-Phe-(Ala)10-Lys-H+ Ac-Lys-Phe-(Ala)10-H+ Spectroscopic signatures of helix."— Presentation transcript:

1 Conformation-specific IR spectroscopy of cold Ac-Phe-(Ala)5-Lys-H+ Ac-Phe-(Ala)10-Lys-H+ Ac-Lys-Phe-(Ala)10-H+ Spectroscopic signatures of helix formation Jaime A. Stearns, Monia Guidi, Caroline Seaiby, Annette Svendsen, Oleg V. Boiarkine, and Thomas R. Rizzo Laboratoire de chimie physique moléculaire Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

2 Previous identification of a gas phase helix
Ac-Ala11-Lys-H+ a-helix has 13-membered H-bonding rings (C13) 310-helix has C10 rings Hudgins, R. R. and M. F. Jarrold (1999). JACS 121(14):

3 Experimental approach
22-pole ion trap (6 K) S0 S1 v=1 detected fragments UV IR

4 Can we spectroscopically identify a helical domain in the gas phase?
Ac-Phe-(Ala)10-Lys-H+ (helical) Ac-Lys-Phe-(Ala)10-H+ (globular) Ac-Phe-(Ala)5-Lys-H+ Dissociation time Spectral complexity Computational feasibility

5 UV spectra PheH+ Ac-Phe-(Ala)5-Lys-H+ Ac-Phe-(Ala)10-Lys-H+

6 Ac-Phe-(Ala)5-Lys-H+ OH NH3+ free NH bound NH
go through OH/ less bound NH / bound NH rough, intuitive assignments

7 Ac-Phe-(Ala)5-Lys-H+ 7 kJ/mol A3 A2 A4±A5 K F A1 3 kJ/mol A3 A2 A4±A5
OH K F A1 3 kJ/mol go through specifics of each type of interaction. explain differences A3 A2 A4±A5 F K A1 OH B3LYP/6-31G** (scaled 0.95)

8 Isotopically labeled Ac-Phe-(Ala)5-Lys-H+
15N-Ala-3 15N-Ala-5 * A5 * unlabeled A3 unlabeled

9 Ac-Phe-(Ala)10-Lys-H+ A1 A5 A2 (C10) A4 K F A3 (C10) free/ p/ C5
OH A2 (C10) A4 K F A3 (C10) free/ p/ C5

10 Ac-Lys-Phe-(Ala)10-H+ Ac-Phe-(Ala)10-Lys-H+
Hudgins, R. R. and M. F. Jarrold (1999). JACS 121(14): Ac-Phe-(Ala)10-Lys-H+

11 Ac-Phe-(Ala)5-Lys-H+ C10 free/ p/ C5 Ac-Phe-(Ala)10-Lys-H+ C13 C10
OH C10 free/ p/ C5 Ac-Phe-(Ala)10-Lys-H+ C10 C13 Ac-Lys-Phe-(Ala)10-H+

12 Conclusions We can use photofragmentation and IR depletion up to a 12-mer N-H stretches of helical molecules: free and weakly bound ~ cm-1 (1st two and last residues) C10 rings ~ 3300 cm-1 (third residue) C13 a-helical rings ~ cm-1 O-H stretches: free in helical peptides hydrogen-bonded in globular peptides UV spectrum is sensitive to IR absorption 20 Å away

13 Looking Ahead Multiple chromophores to tag different domains
Carbonyl stretches Water adsorption

14 Protein and Peptide Chemistry Facility
Acknowledgements Prof. Tom Rizzo Monia Guidi Caroline Seaiby Dr. Catherine Servis, Protein and Peptide Chemistry Facility Dr. Oleg Boiarkine Dr. Annette Svendsen FNSNF Funding:


Download ppt "Conformation-specific IR spectroscopy of cold Ac-Phe-(Ala)5-Lys-H+ Ac-Phe-(Ala)10-Lys-H+ Ac-Lys-Phe-(Ala)10-H+ Spectroscopic signatures of helix."

Similar presentations


Ads by Google