Download presentation

Presentation is loading. Please wait.

Published byShaun Linwood Modified over 6 years ago

1
1 Chapter 24--Examples

2
2 Problem In the figure to the left, a potential difference of 20 V is applied across points a and b. a) What is charge on each capacitor if C 1 = 10 F, C 2 =20 F, and C 3 =30 F. b) What is potential difference across points a and d? c) D and b?

3
3 Step 1: Find Equivalent Resistance C1&C2: 10+20=30 C1&C2+C3: (1/30)+(1/30)= 2/30 i.e. 30/2=15 F

4
4 Finding Potentials Q=CV=15*20=300 C So charge on C3 is 300 C The voltage across C3 is C/30 F= 10 V So 10 V across points b & d and therefore, 20-10=10 V across a & d

5
5 Parallel Network If there is 10 V across this network then Q1=10 F*10V= 100 C If there are only 300 C total and 100 C is on this capacitor, then 200 C must be charge of C2 Check: Q2=20 F*10V=200 C

6
6 Problem In the figure, each capacitor C 1 =6.9 F and C 2 =4.6 F. a) Compute equivalent capacitance between a and b b) Compute the charge on each capacitor if V ab =420 V c) Compute V cd when V ab =420 V

7
7 Analysis Look at the right most connection: it is parallel connection between the C2 capacitor and the 3 C1 capacitors 3 C1’s: 6.9/3=2.3 F C2+3C1’s=2.3+4.6=6.9

8
8 Repeat Again Now the 6.9 F capacitor is in series with the other C1 capacitors So it is the same circuit as again, so the equivalent is 6.9 F Finally, the total equivalent is 2.3 F

9
9 So 420 V *2.3 F= 966 C For each C1 capacitor on the leftmost network, the voltage across each is 140 V (966/6.9 or 420/3) If there is 140 V across the C2, then 140*4.6=644 C There must be 966-644 = 322 C in the other branch.

10
10 In the middle network, Each capacitor has 46.67 V (140/3 or 322 C/6.9) So voltage across c & d is 46.67 V Then C2 capacitor has 214 C and the other C1 capacitors have 322-214 =107 C

11
11 Problem Two parallel plates have equal and opposite charges. When the space between them is evacuated, the electric field is 3.2 x 10 5 V/m. When the space is filled with a dielectric, the electric field is 2.5 x 10 5 V/m. a) What is the charge density on each surface of the dielectric? b) What is the dielectric constant?

12
12 ++++++++++++++++++++++ - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - +++++++++++++++++++ E0E0 EiEi E Total =E 0 -E i i =8.85e-12*(3.2-2.5)*10 5 =4.32x10 6 C/m 2

13
13 Dielectric Constant K=E 0 /E=3.2e5/2.5e5=1.28

14
14 Problem A 3.4 F capacitor is initially uncharged and then connected in series with a 7.25 k resistor and an emf source of 180 V which has negligible resistance. a) What is the RC time constant? b) How much time does it take (after connection) for the capacitor to reach 50% of its maximum charge? c) After a long time the EMF source is disconnected from the circuit, how long does it take the current to reach 1% of its maximum value?

15
15 RC Value RC=3 F*7.25k RC=3e-6*7.25e3 RC=21.75 ms

16
16 Time to 50% of max charge Q(t)=C*V*(1-e -t/RC ) Q(t)/CV is the fraction of the maximum charge so let Q(t)/CV =50%.5=1-e -t/RC e -t/RC =.5=1/2 or 2 -1 -t/RC=-ln(2) t=RC*ln(2)=21.75*.693 t=15.07 ms

17
17 Since R & C have not changed, RC=21.75 ms I(t)=(V/R)*e -t/RC I(t)/(V/R) is the fraction of maximum current Let I(t)/(V/R) = 1% or 0.01 0.01=e -t/RC ln(0.01)=-4.605=-t/RC t=21.75*4.605=100 ms

Similar presentations

© 2021 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google