Presentation is loading. Please wait.

Presentation is loading. Please wait.

Decade of pulsar observations in Pushchino and Kalyazin Radio Astronomy observatory. V.A.Potapov, P.N.Lebedev Physical Institute of RAS, Pushchino Radio.

Similar presentations


Presentation on theme: "Decade of pulsar observations in Pushchino and Kalyazin Radio Astronomy observatory. V.A.Potapov, P.N.Lebedev Physical Institute of RAS, Pushchino Radio."— Presentation transcript:

1 Decade of pulsar observations in Pushchino and Kalyazin Radio Astronomy observatory. V.A.Potapov, P.N.Lebedev Physical Institute of RAS, Pushchino Radio Astronomy Observatory, Pulsar Astrometry Dept.

2 The persons took part in this work. PRAO ASC LPI –Yu.Ilyasov; O.Doroshenko; V.Oreshko; A.Rodin; M.Pshirkov, E.Zmeeva ASC LPI –M.Popov; V.Soglasnov KSRC NICT (Japan) –Yu.Hanado; M.Sekido; M.Imae; T.Kondo; S.Tekefuji MSU –N.Korotkova

3 Contents Pulsar timing at Kalyazin in 1997 - 2007. Pulsar VLBI at Kalyazin. Giant Pulses observations at Kalyzin and Pushchino.

4 PULSAR TIMING AT KALYAZIN IN 1997 – 2007.

5 Historical overview 1995 – testing of 0.6 GHz pulsar timing system at 22 m radio-telescope (RT-22) in Pushchino. 1995 – 1996 – First timing observations at 0.6 GHz at Bear Lakes 64-m radio telescope 1997 – 2007 – Timing observations at 0.6 and 1.4 GHz in Kalyazin 64-m radio telescope (RT-64). 2007 - … - Elaboration of the new generation digital multi-frequency (0.6, 1.4, 1.6, 2.2 GHz) pulsar timing system for Kalyazin

6 Kalyazin 64-m radio telescope

7 Coordinates57°13`22.8587 `` N.L.; 37° 54` 01.1533`` E.L.; h =178.079 m. Х=2731190.445; У=2126198.279 ; Z=5339535.645 m Main reflector64 m Main reflector RMS1.1 mm Minimal wavelength1.35 cm Secondary reflector6 m Antenna efficiency0.5 – 0.6 Receiving systemMulti-frequency horn d=2m, l=6m PolarizationsRCP, LCP Simultaneously used frequencies 0.6; 1.4; 2.3; 8.3 GHz or 0.6; 1.7; 2.3; 4.8; 22 GHz Guidance speedFast - 1° / s; slow – 1.5` / s

8 RT-64 receivers (2007 yr. status) SystemPR-0.6PR-1.4PR-2.2PR-8.3 Freq. GHz0.596-0.6041.35-1.452,07-2,327.80-8.70 Heterodyne freq. GHz 562.0; 563.61590.02020,08080.0 Int. freq. MHz38175230300 T receiver, K40251214 Antenna efficiency 0.530.50.550.3

9 “Analogue generation” Pulsar observation systems used in Kalyzin (till 2007). 1.AS-600/160: ~600 MHz; BW 2x3.2 MHz, (80x2x40KHz channels), τ=10 μs. 2.AS-1400/256: ~1400 MHz; 2x32 MHz (128x2x250 kHz), τ<=4 μs. 3.AOP-1400: ~1400-1600 MHz; BW ~200 MHz (500x40kHz), τ<=4 μs.

10 AS-1400/256 AS-600/160 AOP-1400

11 AS-600/160, observer’s interface

12 AS-1400/256, observer’s interface

13 Data processing Integration of pulsar profile and calculation of topocentric TOAs: –kkfs1,2,3 packages (Doroshenko, Potapov, 1998- 2007) –iPulsar package with an extended possibility of noise filtering in time/frequency domains (PA Dept., 2008) Barycentric TOAs and pulsar parameters calculations –TIMAPRv1,v2 (Doroshenko, Kopeikin, 1990- 2009)

14 Scientific goals Building ensemble PT and BPT scales. Investigation of the low-frequency noise in pulsar TOA residuals (search for the low- frequency gravitational waves background – GWB, in particular) Investigations of long-term ISM perturbations.

15 Long-term timing of millisecond pulsars at 600 MHz in 1997-2007 J0613-0200, J1012+5307, J1022+1001, J1640+2224, J1643-1224, J1713+0747, B1937+21, J2145-0750 Position of 8 Kalyazin millisecond pulsars (bold points) between about 40 millisecond pulsars with regular timing.

16

17

18 Pulsar time stability investigations, σ z statistics Sloped lines correspond to the energy density of GWB from the early Universe ( S(f) ~ 1/f ⁵ )

19 Pulsar time stability investigations, σ z statistics

20 Approaches to the ensemble PT, weighted average. 6 Kalyazin pulsars EPT synthesis. PTS package used (Pshirkov, Korotkova, 2010)

21 Approaches to the ensemble PT, weighted average. 6 Kalyazin pulsars EPT. Res weighing 30 days averaged.

22 Approaches to the ensemble PT, weighted average and Wiener filtering. (Rodin, 2010)

23 Approaches to the ensemble PT, weighted average and Wiener filtering. Dashed line - 6 pulsars, weighted average (residuals), Points – 3 pulsars, weighted average (residuals, J0613-02, J1640+22,J1713+07) Line – 6 pulsars, Wiener filtering (Rodin, 2011)

24 Approaches to BPT and ultra-low frequency GWB. (Ilyasov, Kopeikin, Rodin, 1998) Pulsar time- PT Binary pulsar time - BPT Time terrestrial – TT Barycentric time - BT

25 Approaches to BPT and ultra-low frequency GWB.

26 Ultra-low frequency GWB limiting. (Kopeikin, 1997, Kopeikin & Potapov, 2004)

27 Summary on relic GWB energy density Ω g h² limiting using Kalyazin pulsar timing data. <= 10 ⁻⁷ in f ~ 6x10 ⁻⁹ Hz, straight σ z analysis (Potapov, 2004) ~ 10 ⁻⁸ in f ~ 6x10 ⁻⁹ Hz, using correlation functions of 6 pulsars TOAs with SSA “Caterpillar” method (Rodin, 2011) <= 4x10 ⁻⁴ in f ~ 10 ⁻¹¹ - 7.1x10⁻⁷ Hz (J1640+22 binary parameters analysis, Potapov, 2004)

28 Two frequency observations at of PSR B1937+21 – discovery of secular DM variation. KK – Kalyazin (0.6 GHz) – Kashima (2.15 GHz) observations, KA – Kalyazin 0.6 – 1.4 GHz observations. d(DM)/dt= - 0.00114(1) pc ∙ cm ⁻³ in 1984 – 2004 (Ilyasov et al. 2004)

29 Prospects for future timing in Kalyazin. Digital FFT pulsar processors one module test at 1.4 GHz (BW = 50 MHz, 512 channels, 3 min integration), PSR B1937+21 and J1713+0747

30 Prospects for future timing in Kalyazin 2011 ~. Digital FFT pulsar processors –80 MHz BW in 256 chan. at 0.6 GHz with τ<=3μs –Up to 200 MHz BW in 1024 chan. at 1.4 or 1.6 GHz with τ<=1μs –200+ MHz BW in 1024 chan. at 2.2 GHz with τ<=1μs Regular timing >~ 20 binary millisecond pulsars of northern hemisphere in about 1 session/(10-15) days in 2 – 3 frequencies.

31 PULSAR VLBI AT KALYAZIN

32 Kalyazin VLBI system (2007 yr.)

33 Coordinates and proper motion detection on the base Kalyazin – Kashima (Japan) Sekido et al., 1998

34 Coordinates and proper motion detection on the base Kalyazin - Kashima Sekido et al., 1998

35 DE200 – ICRF frame connection. Rotation axesRodin, Sekido 2002 pulsar VLBI (mas) Bartel et al., 1985 LLR and quasar VLBI observations (mas) X-4±2-2±2 Y-13±3-12±3 Z-17±5-6±3 VLBI observations of pulsars B0329+54, B0355+54, B0950+08, B1933+16, B2021+51 were used.

36 Prospects of Space-Earth pulsar VLBI in “RadioAstron” space radio telescope project. Kalyazin RT-64 will be used as a one of the Earth VLBI station. Space radio telescope with 10-m diameter and 300000 km in apogee may provide sub - 0.1 mas accuracy of point object coordinate in ICRF. In space RT – one Earth RT-64 configuration up to 22 pulsars with flux 13 < S < 1100 mJy may be observed at 1.6 GHz. In full configuration (Earth telescopes equivalent to the one 130 m diameter radio telescope) up to 56 pulsars with 7 < S < 1100 mJy. The launch is planned in the 3th decade of July 2011. As much as 3-4 pulsars are to be observed in the early observation program.

37 List of pulsars – candidates for the Space-Earth VLBI. ------------------------------------------------------------------------------------------------------------------------- # NAME PSRJ RAJ DECJ S1400 S/N Res Calibrator 1d (hms) (dms) (mJy) (mas) (rfc_2011a) 1 B0833-45 J0835-4510 08:35:20.6 -45:10:34.8 1100.00 1340.672 1.325374 1+1U 2 B1713-40 J1717-4054 17:17:21 -40:54:38 54.00 80.35447 22.11376 1 3 B0736-40 J0738-4042 07:38:32.3 -40:42:40.9 80.00 58.76232 30.23942 1 4 B2020+28 J2022+2854 20:22:37.0 +28:54:23.1 38.00 48.46162 36.66644 2 5 B1556-44 J1559-4438 15:59:41.5 -44:38:45.9 40.00 46.88687 37.89811 1 6 B2016+28 J2018+2839 20:18:03.8 +28:39:54.2 30.00 41.14197 43.19014 1 7 B1642-03 J1645-0317 16:45:02.0 -03:17:58.3 21.00 39.99059 44.43322 1 8 B1929+10 J1932+1059 19:32:13.9 +10:59:32.4 36.00 39.61237 44.85835 1 9 B1749-28 J1752-2806 17:52:58.6 -28:06:37.3 18.00 30.15447 58.92846 1N 10 B1240-64 J1243-6423 12:43:17.1 -64:23:23.8 13.00 21.13359 84.07916 1 11 B0628-28 J0630-2834 06:30:49.4 -28:34:42.7 23.00 20.28642 87.59385 1 12 B1054-62 J1056-6258 10:56:25.5 -62:58:47.6 21.00 18.90665 93.98259 1 13 B0823+26 J0826+2637 08:26:51.3 +26:37:23.7 10.00 17.89530 99.29751 1N 14 B1449-64 J1453-6413 14:53:32.7 -64:13:15.5 14.00 16.47393 107.8626 1 15 B0904-74 J0904-7459 09:04:10.8 -74:59:42.8 14.00 15.87081 111.9607 1 16 B2045-16 J2048-1616 20:48:35.6 -16:16:44.5 13.00 15.80564 112.4212 1 17 B1804-08 J1807-0847 18:07:38.0 -08:47:43.2 15.00 14.56202 122.0251 1 18 B1742-30 J1745-3040 17:45:56.3 -30:40:23.5 13.00 14.21371 125.0126 1+1N 19 B2111+46 J2113+4644 21:13:24.3 +46:44:08.7 19.00 13.39365 132.6660 1 20 B1237+25 J1239+2453 12:39:40.4 +24:53:49.2 10.00 13.06561 135.9964 1 21 B1737-30 J1740-3015 17:40:33.8 -30:15:43.5 6.40 12.45043 142.7252 1N 22 B0538-75 J0536-7543 05:36:30.7 -75:43:56.7 13.00 12.24966 145.0554 1 23 B0450+55 J0454+5543 04:54:07.7 +55:43:41.4 13.00 12.16867 146.0209 1 24 B1508+55 J1509+5531 15:09:25.6 +55:31:32.3 8.00 11.60582 153.1043 1 25 B1358-63 J1401-6357 14:01:52.4 -63:57:45.5 6.20 11.29577 157.3060 1 26 B0818-13 J0820-1350 08:20:26.3 -13:50:55.8 7.00 11.29269 157.3478 1+1U 27 B1857-26 J1900-2600 19:00:47.5 -26:00:43.8 13.00 10.70191 166.0371 3

38 GIANT PULSES OBSERVATIONS AT KALYAZIN AND PUSHCHINO

39 List of pulsars with GP detected. PSR Jname (Bname) RA hms DEC dms P0 s DMW50 ms S 1.4 mJy 1234567 J0034-0721 00:34:08.86-07:21:53.40.9429511.3856.711.0 J0218+423202:18:06.35142:32:17.430.00232361.25*0.9 J0534+2200 /B0531+21 05:34:31.97322:00:52.060.03308456.793,014.0 J0540-691905:40:11.16-69:19:53.90.050498146.5180.024 J1115+503011:15:38.4050:30:12.291.6564399.1916.63.0 J1752+235917:52:35.4223:59:48.20.0030519.80.150.18 J1939+2134 /B1937+21 19:39:38.55821:34:59.130.0015571.00.0610 J1959+204819:59:36.76920:48:15.120.03511229.10.030.4

40 MJy GP registration of Crab pulsar in Kalyazin using K-5 VLBI DAS. F, GHzS pic, JyN (per hour) 0.6 (0.3  1.0 ) 10 6 6  8 4.85 (1  2) 10 4 2  3 (Popov, Soglasnov, 2007)

41 GP registration for local time standard synchronization. GP of B0531+21 in Algonquin Park – Kalyazin VLBI observations in 2005. (S-2, 2.2 MHz) CCF of GP observed on the base Algonquin Park – Kalyazin. Time delay determination accuracy ±5 ns.

42 GP registration for local time standard synchronization and astrometric pulsar VLBI. CCF phase of 268 GPs of B0531+21 in Algonquin Park – Kalyazin VLBI. Phase ±0.5 Rad equiv. ± 2.5 ns Structure function CCF phase vs time of observations. GP (upper) And calibration source DA193. Saturation of structure function corresponds to scintillation time at 2.2 GHz

43 GP registration of Crab pulsar in Pushchino using K-5 VLBI DAS. (Dec. 2010 data)

44 The “Radioastron” VLBI session simulation 02 Feb. 2011. The main Goal – to make VLBI session in “Radioastron” mode. Sites: “Quasar” VLBI system of 3 34-m radiotelescopes (Svetloe, Badary, Zelenchuk), Medicina 32-m radiotelescope, Pushchino 22-m radiotelesope (Space RT simulation mode) Equipement: RDR and Mark-5 DAS. Our particular goals: 1) to prove possibility of the time synchronization of the on-board and Earth time standard using GP, 2) to test possibility of pulsars GP VLBI with “Radioastron”.

45 The “Radioastron” VLBI session simulation 02 Feb. 2011. Results of GP observations. Crab GP with complex Microstructure. Simultaneously registered Crab GP

46 The “Radioastron” VLBI session simulation 02 Feb. 2011. TOA of GP delay between sites (correlation of GPs in time domain). SV – Svetloe, BD – Badary, ZK – Zelenchuk, PU - Pushchino

47 THANK YOU


Download ppt "Decade of pulsar observations in Pushchino and Kalyazin Radio Astronomy observatory. V.A.Potapov, P.N.Lebedev Physical Institute of RAS, Pushchino Radio."

Similar presentations


Ads by Google