Presentation is loading. Please wait.

Presentation is loading. Please wait.

© 2013 IBM Corporation Use of Hierarchical Design Methodologies in Global Infrastructure of the POWER7+ Processor Brian Veraa Ryan Nett.

Similar presentations


Presentation on theme: "© 2013 IBM Corporation Use of Hierarchical Design Methodologies in Global Infrastructure of the POWER7+ Processor Brian Veraa Ryan Nett."— Presentation transcript:

1 © 2013 IBM Corporation Use of Hierarchical Design Methodologies in Global Infrastructure of the POWER7+ Processor Brian Veraa (veraa@us.ibm.com) Ryan Nett (nett@us.ibm.com) Ryan Kruse (kruser@us.ibm.com)

2 © 2013 IBM Corporation Introduction  POWER7+ Microprocessor –567mm 2 –2.1B devices at 4+GHz core frequency –Large global design team  Hierarchical implementation –Divide and Conquer  Certain global structures span hierarchy –Power –Clock –I/O  We will discuss unique PD challenges presented by these structures –Over/Under booking physical resource –Connectivity across hierarchy –Floorplanning around these structures

3 © 2013 IBM Corporation POWER7+ Chip Core + Cache Core Load/Store Unit Example of POWER7+ Hierarchy

4 © 2013 IBM Corporation Global Infrastructure (G.I.)  Implemented at top level of hierarchy –Clock Distribution –Power Distribution –I/O connections  Load/Store Unit example –First design team delivers LSU –Second design team implements clock distribution at top level –Third design team implements power gating at top level –Many G.I. components fall within physical perimeter of child  Challenge: Communicate physical design data across hierarchy Load/Store Unit (great-grandchild of chip) Power gating circuits Clock buffers

5 © 2013 IBM Corporation Communicating PD data across hierarchy: Parent Covers Parent Cover Child2 Parent Child1  Parent cover represents G.I. content interacting with child  Feedback loop to resolve parent/child conflicts  Used by child for –Floorplanning –Routing –Checking  Multi use children get unioned parent cover Generate new G.I. abstract Parent resolves floorplan conflicts Generate parent cover for child Update child abstract to reflect inverse of parent cover Child feeds back change proposals to G.I. owner Parent runs G.I.  child collision checking Child respects parent cover during floorplan and routing Child runs LVS / DRC

6 © 2013 IBM Corporation Load/Store Unit (8 copies) Load/Store Parent Cover Chip level Power Gate circuits POWER7+ Chip Union 8 copies Example of Parent Cover Assembly at Chip Level

7 © 2013 IBM Corporation Challenges with Hierachical Design  Over/Underbooking resource  Connectivity Across Hierarchy  Floorplanning around G.I. Content

8 © 2013 IBM Corporation Overbooking and Underbooking  To enable parallel design work, initial G.I. abstractions are based on estimates –Accuracy of estimates improves over time  Overbooking –Cost is suboptimal utilization  Underbooking –Cost is late design change  Late changes to G.I. abstraction can drive floorplanning, routing, and timing efforts at a schedule sensitive time of the project  The POWER7+ chip team generated parent covers regularly throughout the design cycle to reflect higher quality G.I. component abstracts as their designs matured Child2 Parent Child1

9 © 2013 IBM Corporation Connectivity Across Hierarchy Power connections to G.I.  Certain G.I. components need power connectivity to children –Clock buffers are connected into child power grid –Power gate circuit supplies power to children Power gate circuit inputs hidden from children Chip G.I. ComponentChild Unit C4 via metal via metal via metal via metal via metal via metal Power gate circuit metal via metal via metal via metal via metal via metal via metal via metal via metal via metal Unit Circuits Power Path through power gate circuits Child Unit Chip G.I. Component Child Unit Clock Buffer Metal (power) via metal via metal via metal via metal via Metal (power) via metal via metal via metal via metal Unit Circuits Power Path to clock circuits via metal via metal via metal via metal Unit Circuits

10 © 2013 IBM Corporation Connectivity Across Hierarchy Checking errors encountered in parent  Case 1: Child contacts V1/V2 pin –Problem: LVS short between V1 and V2 at parent level –Solution: Represent V1/V2 union as blockage, not pins Parent Inst 1 of child Inst 2 of child GND V1V2 Area where both V1 and V2 are present in the parent  Short in parent if child connects to it! Unioned shapes GND exists in only 1 parent instance. Potential DRC or LVS open if child connects to it! (x1,y1) (x2,y2)  Case 2: Child contacts GND pin to complete a signal route –Problem 1: LVS open at parent in Inst 2 –Problem 2: DRC error generated at parent in Inst 2 (min area or notch) –Solution: Don’t permit signal routes to contact parent cover

11 © 2013 IBM Corporation Connectivity Across Hierarchy False checking errors encountered in child Parent Cover V2 V1 (A)  Child contains two power rails: V1, V2  G.I. content contains only V1  Pin V1 (A) is connected to V1 grid by layout of G.I. component  Child sees V1 (A) as an LVS open  Checking in parent context is LVS Clean  False opens are communicated to parent to refine parent cover

12 © 2013 IBM Corporation Floorplanning Around G.I. Content  G.I. circuits consumed a large amount of metal resource –Influenced child floorplanning and route planning. Congestion analysis –Floorplans were adjusted to minimize the number of flight-lines crossing a particular G.I. component. –In other cases the G.I. was altered.  Consider grouping tightly coupled circuits on the same side of a G.I. component. Load/Store Unit

13 © 2013 IBM Corporation Conclusion  POWER7+ relied on hierarchical methods to close a large design with a global design team –Concurrent design and schedule closure –Flat design of selected components to meet high performance needs  Management of Global Infrastructure components required: –Effective abstraction –Connectivity modeling across hierarchy –Careful floorplanning  Newer generations of processors are likely to demand more global power and clock management features –More thorough G.I. planning and execution –Better hierarchical interaction management  Techniques and Tools developed by POWER7+ will continue to be leveraged in the future


Download ppt "© 2013 IBM Corporation Use of Hierarchical Design Methodologies in Global Infrastructure of the POWER7+ Processor Brian Veraa Ryan Nett."

Similar presentations


Ads by Google