Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 A Free Electron Laser Project at LNF Massimo Ferrario INFN - LNF & the SPARC/X Team Catania 30 Marzo – 2 Aprile 2005.

Similar presentations


Presentation on theme: "1 A Free Electron Laser Project at LNF Massimo Ferrario INFN - LNF & the SPARC/X Team Catania 30 Marzo – 2 Aprile 2005."— Presentation transcript:

1 1 A Free Electron Laser Project at LNF Massimo Ferrario INFN - LNF & the SPARC/X Team Catania 30 Marzo – 2 Aprile 2005

2 2 SPARC/X Team SPARC/X Team D. Alesini, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C.Ligi, F.Marcellini, C. Milardi,, L. Pellegrino, M. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B.Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, M. Zobov (INFN /LNF) F. Alessandria, I. Boscolo, F. Broggi, S.Cialdi, C. DeMartinis, D. Giove, C. Maroli, V. Petrillo, M. Romè, L. Serafini, (INFN /Milano) D. Levi, M. Mattioli, G. Medici, P. Musumeci (INFN /Roma1) L. Catani, E. Chiadroni, A. Cianchi, D. Moricciani, C. Schaerf (INFN /Roma2) M. Migliorati, A. Mostacci,L. Palumbo (Univ. La Sapienza) M. Migliorati, A. Mostacci, L. Palumbo (Univ. La Sapienza) F. Ciocci, G. Dattoli, A. Dipace, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E.Giovenale, G. Messina, P.L. Ottaviani, S. Pagnutti, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, G. Ronci, C. Ronsivalle, M. Rosetti, E. Sabia, M. Sassi, A. Torre, A. Zucchini(ENEA/FIS) F. Ciocci, G. Dattoli, A. Dipace, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E.Giovenale, G. Messina, P.L. Ottaviani, S. Pagnutti, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, G. Ronci, C. Ronsivalle, M. Rosetti, E. Sabia, M. Sassi, A. Torre, A. Zucchini (ENEA/FIS) J. B. Rosenzweig, S. Reiche (UCLA) P. Bolton, D. Dowell, P.Emma, P. Krejick, C. Limborg, D. Palmer (SLAC)

3 3 Free Electron Laser SPARC - SPARXINO - SPARX

4 4 Undulator Radiation

5 5 Relativistic Mirrors Counter propagating pseudo-radiation Compton back-scattered radiation in the moving mirror frame Doppler effect in the laboratory frame TUNABILITY

6 6 Radiation Simulator – T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm

7 7 Due to the finite duration the radiation is not monochromatic but contains a frequency spectrum which is obtained by Fourier transformation of a truncated plane wave

8 8 Spectral Intensity Line width

9 9 Peak power of accelerated charge: different electrons radiate indepedently hence the total power depends linearly on the number N e of electrons per bunch: Incoherent Spontaneous Radiation Power: Coherent Stimulated Radiation Power: WE NEED micro-BUNCHING !

10 10 Can there be a continuous energy transfer from electron beam to light wave? The electron beam acts as a dielectric medium which slows down the phase velocity of the ponderomotive field compared to the average electron longitudinal velocity. Hence resonant electrons bunch around a phase corresponding to gain. Newton Lorentz Equations Maxwell Equations The particles within a micro-bunch radiate coherently. The resulting strong radiationfield enhances the micro-bunching even further. Result: collective instability, exponential growth of radiation power.

11 11 Free Electron Laser Self-Amplified-Spontaneous-Emission (No Mirrors)

12 12 SASE Saturation Results TTF-FEL DESY 98 nm TTF-FEL DESY 98 nm Since September 2000: 3 SASE FEL’s demonstrate saturation Since September 2000: 3 SASE FEL’s demonstrate saturation LEUTL APS/ANL 385 nm LEUTL APS/ANL 385 nm September 2000 VISA ATF/BNL 840 nm VISA ATF/BNL 840 nm March 2001

13 13 TTF FEL LEUTLE

14 14 SASE Longitudinal coherence The radiation “slips” over the electrons for a distance N u rad ζ independent processes Slippage length 

15 15 SASE Courtesy L. Giannessi (Perseo in 1D mode http://www.perseo.enea.it)

16 16 SEEDING Courtesy L. Giannessi (Perseo in 1D mode http://www.perseo.enea.it)

17 17 R. Saldin et al. in Conceptual Design of a 500 GeV e+e- Linear Collider with Integrated X-ray Laser Facility, DESY-1997-048 FEL Electron Beam Requirements: High Brightness B n => High Peak Current & Low Emittance BnBn  B n K 2 BnBn energyspread undulatorparameter minimum radiation wavelength gain length

18 18 SPARC - SPARXINO - SPARX

19 19 SPARC Project 7.5 +2.5 M€ (MIUR+INFN) R&D program towards high brightness e - beam for SASE-FEL’s R&D program towards high brightness e - beam for SASE-FEL’s SPARX Phase I 10 + 2.35 M€ (MIUR+INFN) - R&D towards an X-ray FEL-SASE source - Test Facility at 10 nm with the Da  ne Linac (SPARXINO) SPARX Phase II 12 M€ ? (MIUR) - Linac energy up-grade (1.5 GeV ?) -> 2 nm ?

20 20 SPARC DESY BNL UCLA SLAC UE MOU EUROFELEUROFELEUROFELEUROFEL 1 M€

21 21

22 22 B bunch compressors RF & magnetic Pulse Shaping New Working Point How to increase e - Brightness

23 23 Laser Pulse Shaping with “Dazzler” experiments

24 24 Final emittance = 0.4  m Matching onto the Local Emittance Max., “Ferrario Working Point” also adopted by LCLS and TESLA-XFEL injectors Emittance Compensation: Controlled Damping of Plasma Oscillations

25 25 Radiation power growth along the undulator @ 530 nm GENESIS simulation of the SPARC SASE-FEL

26 26 Coherent Synchrotron Radiation (CSR)  Powerful radiation generates energy spread in bends  Causes bend-plane emittance growth  Energy spread breaks achromatic system   x = R 16 (s)  E/E bend-plane emittance growth e–e–e–e– R zzzz coherent radiation for   z overtaking length: L 0  (24  z R 2 ) 1/3  s s xx xx  L0L0L0L0

27 27 14.5 m1.5m 20º 1.5 m D 10.0 m 6.0 m Undulator Gun Solenoids Velocity Bunching Longitudinal Focusing

28 28 z pzpz z

29 29 + Channelling MAMBO

30 30 The Frascati Laser for Acceleration and Multidisciplinary Experiments laser pulses50 fs, 800 nm >100 TW @10 Hz laser pulses : 50 fs, 800 nm >100 TW @10 Hz

31 31 E x  2  2  las (1-cos  ) 10 9 fotoni/s Produzioni di impulsi X : 10 9 fotoni/s, monocromatici 20 keV - 1 MeV 3 ps, monocromatici tunabili nel range 20 keV - 1 MeV Studi di tecniche di mammografia (e angiografia coronarica) Studi di single molecule protein cristallography.

32 32

33 33

34 34

35 35 Energy [GeV] cr [nm] I = 1 kA K = 3  e = 0.1 %  n =4  n =1 SPARC Injector + DA  NE Linac SPARXINO a <10 nm SASE FEL source at LNF

36 36 600 MeV 8 sections SPARC 150 MeV IV 45 MW 1075 MeV e- DAFNE-LINAC SPARX INO + DAFNE2 PC 150 MeV 45 MW NEW COMPONENTS 4 RF STATIONS + SLED MAGN. COMPRESSOR 4 ACC. SECT. + IV ARM CAV SPARC 1050 MeV E+ 45 MW 475 MeV e- 75 MeV 150 MeV 45 MW 1225 MeV e- G per DAFNE2 250 MeV DAFNE-Linac low energy section 45 MW

37 37 The SPARXINO Physics

38 38 Scientific case: Workshop planned on 9/10 May 05 Atomic, molecular and cluster physics Plasma and warm dense matter Condensed matter physics Material science Femtosecond chemistry Life science Single Biological molecules and clusters Imaging/holography Micro and nano lithography

39 39 Classical Vacuum Quantum Vacuum a sizeable rate for spontaneous pair production requires extraordinary strong electric field strengths of order or above the Schwinger critical value QED test: Boiling the Vacuum

40 40 Quantum Vacuum Perturbing field and probe light do not "mix" and the exiting probe photons are unchanged The perturbing field "changes" the structure of the quantum vacuum: probe light and field now "mix" and exiting photon carry information on the structure of the vacuum. The properties of the QUANTUM VACUUM are recorded in the polarisation state of the probe light, which has changed from linear to elliptical. This phenomenon is also called Vacuum Magnetic Birefringence Classical Vacuum QED test: Vacuum Magnetic Birefringence G. Cantatore (INFN -Trieste) http://www.ts.infn.it/experiments/pvlas/quantum.html G. Cantatore (INFN -Trieste) http://www.ts.infn.it/experiments/pvlas/quantum.html

41 41 Measurement schematic Relevant requirements –high magnetic field strength –long optical path in the magnetic region –high photon energy/high photon flux –low background/high signal to noise ratio QED test: Vacuum Magnetic Birefringence

42 42 FERMI 40 nm ==> 10 nm ==> ? MAMBO 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 TTF-II 6 nm LCLS 0.1 nm TESLAX-FEL SASE SASE Seeding Angstrom Angstrom + Channelling SPARX-I => Test Facility => SPARX-II (SPARXINO) R&D X-FEL 10 nm 2 nm

43 43 The following workshop was approved by ICFA at its meeting Feb 10-11, 2005 in Vancouver: Physics and Applications of High Brightness Electron Beams Erice, Sicily, Italy, October 9-14, 2005 Organizers: L. Palumbo (Univ. Roma), J. Rosenzweig (UCLA), L. Serafini (INFN-Milano).


Download ppt "1 A Free Electron Laser Project at LNF Massimo Ferrario INFN - LNF & the SPARC/X Team Catania 30 Marzo – 2 Aprile 2005."

Similar presentations


Ads by Google