Download presentation

Presentation is loading. Please wait.

Published byHelena Maines Modified over 3 years ago

1
Definition of the Anonymity of Mix Network Runs Andrei Serjantov University of Cambridge Computer Laboratory

2
Metric in Mix Networks (PET 2002) Metric also useful in mix networks Q R D B {(A,0.125), (B,0.125), (C,0.25), (D,0.5)} A C

3
Route Length (Sets) (PET 2002) Q R D B {A,B,C,D} A C Now we look at how information can change APD, but not the underlying set Mix systems, often have a maximum route length (eg Mixmaster)

4
Route Length (probabilities) (PET 2002) Max route length = 2. A"1,3,2"Q cannot happen C"3,2" {Q or R}. S has the anonymity set {A,B} Q,R still have the anonymity set {A,B,C} but a different anonymity probability distribution (with a lower entropy) 12 3 A B C S R Q

5
Hence we need a principled way of calculating the anonymity of a message as seen by the attacker!

6
A Formal Model of a Mix Network Given a set of input messages, our model can tell us what the mix network will do → (a real trace of events which happen in the network) M2 M1 Sender2 Sender1 Sender3 R2 R1 R3 {(Sender1,[M1,M2],R1) (Sender2,[M1],R2) (Sender3,[M2],R3)}

7
Generating a Real Trace M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 1)] {(Sender1,[M1,M2],R1,C1) (Sender2,[M1],R2,C2) (Sender3,[M2],R3,C3)}

8
Erasing the Real Trace (1) From this, we can work out what the attacker will observe –(the real get erased to remove the information the attacker cannot see) –We get an erased trace M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3

9
Erasing the Real Trace (2) Real trace: [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 1)] Erased trace: [(Sender 1,M 1),(Sender 2,M 1),(Mix 1,Recv (R 2)), (Mix 1,M 2),(Sender 3,M 2),(Mix 2,Recv (R 3)),(Mix 2,Recv (R1))] M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3

10
From the Attacker’s Point of View The attacker has an observation (an erased trace Obs) He now uses the model to find all the real traces which erase to Obs → Call these All Obs = [(Sender 1,M 1),(Sender 2,M 1),(Mix 1,Recv (R 2)), (Mix 1,M 2),(Sender 3,M 2),(Mix 2,Recv (R 3)), (Mix 2,Recv (R1))] M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3

11
Finding All Scenarios M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 M2 M1 Sender 2 Sender 1 Sender3 R2 R1 R3 I II III IV In 2 out of the 4 scenarios Sender 3 sent the message to R1

12
(In ASCII!) [[(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 1)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 2),(Mix 1,M 2,MixRecv,C 1),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 1),(Mix 2,Recv (R 1),RecvRecv,C 3)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 1),(Mix 1,M 2,MixRecv,C 2),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 3),(Mix 2,Recv (R 1),RecvRecv,C 2)], [(Sender 1,M 1,MixRecv,C 1),(Sender 2,M 1,MixRecv,C 2),(Mix 1,Recv (R 2),RecvRecv,C 1),(Mix 1,M 2,MixRecv,C 2),(Sender 3,M 2,MixRecv,C 3),(Mix 2,Recv (R 3),RecvRecv,C 2),(Mix 2,Recv (R 1),RecvRecv,C 3)]]

13
Probabilities Suppose: –All senders equally likely to send to all receivers –All routes equally likely to be chosen →All scenarios are equiprobable For the message which arrives at R1, the anonymity probability distribution is: {(Sender 1,0.25), (Sender 2, 0.25), (Sender 3,0.5)} (Glossing over the exact details)

14
See my PhD Thesis for this and lots of other cool things…

Similar presentations

OK

1 Maximal Independent Set. 2 Independent Set (IS): In a graph G=(V,E), |V|=n, |E|=m, any set of nodes that are not adjacent.

1 Maximal Independent Set. 2 Independent Set (IS): In a graph G=(V,E), |V|=n, |E|=m, any set of nodes that are not adjacent.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on brain machine interface Ppt on water our lifeline program Ppt on disk formatting fails Ppt on question tags exercises Ppt on 2d transformation in computer graphics by baker Ppt on disk formatting mac Ppt on time division switching How to run ppt on ipad 2 A ppt on loch ness monster sightings Ppt on job rotation job