Download presentation
Published byEddy Audas Modified over 9 years ago
1
Prith Banerjee ECE C03 Advanced Digital Design Spring 1998
Lecture 11 Memory Design Prith Banerjee ECE C03 Advanced Digital Design Spring 1998 ECE C03 Lecture 11
2
Outline Random Access Memories (RAMS) Static RAMs Dynamic RAMS
Memory Organizations Read-Only Memories (ROMS) READING: Katz 7.6, 4.2.5 ECE C03 Lecture 11
3
Memory Need method for storing large amounts of data
Computer programs, data, pictures, etc. RAM: Random Access Memory, Read/Write ROM: Read-only Memory 64x8 RAM A D7 A D6 A D5 A D4 D3 D2 D1 Write D0 ECE C03 Lecture 11
4
8x4 RAM Address Data A2 A1 A0 Out3 Out2 Out1 Out0 000 001 010 011 100
101 110 111 A2 A1 A0 ECE C03 Lecture 11 Out Out Out Out0
5
8x4 RAM In3 In2 In1 In0 Write A2 A1 A0 Out3 Out2 Out1 Out0 000 001 010
011 100 101 110 111 3:8 Decoder Enable S2 S1 S0 A2 A1 A0 ECE C03 Lecture 11 Out Out Out Out0
6
RAM Cell Requirements: Store one bit of data
Change data based on input when row is selected Input S Q R Row Select ECE C03 Lecture 11
7
Static Random Access Memories
Transistor efficient methods for implementing storage elements Small RAM: 256 words by 4-bit Large RAM: 4 million words by 1-bit We will discuss a 1024 x 4 organization Data Data j j Word Enable i Words = Rows Static RAM Cell Static RAM Cell Static RAM Cell ECE C03 Lecture 11 Columns = Bits (Double Rail Encoded)
8
Static RAM Organization
1024 x 4 SRAM CS Chip Select Line (active lo) Write Enable Line (active lo) 10 Address Lines 4 Bidirectional Data Lines WE A9 A8 A7 IO3 A6 IO2 A5 IO1 A4 IO0 A3 A2 A1 A0 ECE C03 Lecture 11
9
RAM Organization Long thin layouts are not the best organization for a RAM A9 Address Buffers A8 Storage Matrix Storage Array 64 x 64 Square Array Some Addr bits select row A7 A6 A5 64 x 16 64 x 16 64 x 16 64 x 16 Row A4 Decoders A3 Address Buffers Some Addr bits select within row A2 Amplifers & Mux/Demux Sense Amplifiers A1 Column A0 Decoders CS Data Buffers WE ECE C03 Lecture 11 I/O0 I/O1 I/O2 I/O3
10
RAM Timing Simplified Read Timing Simplified Write Timing
ECE C03 Lecture 11
11
Dynamic Random Access Memories
1 Transistor (+ capacitor) memory element Read: Assert Word Line, Sense Bit Line Write: Drive Bit Line, Assert Word Line Destructive Read-Out Need for Refresh Cycles: storage decay in ms Internal circuits read word and write back Word Line Bit Line ECE C03 Lecture 11
12
DRAM Organization Long rows to simplify refresh
Two new signals: RAS, CAS Row Address Strobe Column Address Strobe replace Chip Select Storage Matrix Row Decoders 64 x 64 Row Address Column Address & Control Signals A11 Column Latches, Multiplexers/Demultiplexers A0 Control RAS Logic CAS WE DOUT DIN ECE C03 Lecture 11
13
RAM Addressing Even to read 1 bit, an entire 64-bit row is read!
Separate addressing into two cycles: Row Address, Column Address Saves on package pins, speeds RAM access for sequential bits! Address Row Address Col Address RAS Read Cycle CAS Dout Valid Read Row Row Address Latched Read Bit Within Row Column Address Latched Tri-state Outputs ECE C03 Lecture 11
14
RAM Write Timing (1) Latch Row Address Read Row (2) WE low
Col Address RAS (1) Latch Row Address Read Row CAS WE (2) WE low Din Valid (3) CAS low: replace data bit (4) RAS high: write back the modified row (5) CAS high to complete the memory cycle ECE C03 Lecture 11
15
DRAM Refresh Refresh Frequency:
4096 word RAM -- refresh each word once every 4 ms Assume 120ns memory access cycle This is one refresh cycle every 976 ns (1 in 8 DRAM accesses)! But RAM is really organized into 64 rows This is one refresh cycle every 62.5 µs (1 in 500 DRAM accesses) Large capacity DRAMs have 256 rows, refresh once every 16 µs RAS-only Refresh (RAS cycling, no CAS cycling) External controller remembers last refreshed row Some memory chips maintain refresh row pointer CAS before RAS refresh: if CAS goes low before RAS, then refresh ECE C03 Lecture 11
16
Variations of DRAMs Page Mode DRAM:
read/write bit within last accessed row without RAS cycle RAS, CAS, CAS, . . ., CAS, RAS, CAS, ... New column address for each CAS cycle Static Column DRAM: like page mode, except address bit changes signal new cycles rather than CAS cycling on writes, deselect chip or CAS while address lines are changing Nibble Mode DRAM: like page mode, except that CAS cycling implies next column address in sequence -- no need to specify column address after first CAS Works for 4 bits at a time (hence "nibble") RAS, CAS, CAS, CAS, CAS, RAS, CAS, CAS, CAS, CAS, . . . ECE C03 Lecture 11
17
RAM Expansion Implement a big RAM from multiple small RAMS
Address D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 ECE C03 Lecture 11
18
RAM Expansion (cont) Build a 16x16 RAM from 16x4 RAMs 16x4 RAM A3 Din
A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write ECE C03 Lecture 11
19
RAM Expansion (cont) Build a 32x16 RAM from 16x4 RAMs 16x4 RAM A3 Din
A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write 16x4 RAM A Din A2 A Dout A0 Write ECE C03 Lecture 11
20
Read-Only Memories This is another class of memory, which is read only, cannot write. ROM: Two dimensional array of 1's and 0's Row is called a "word"; index is called an "address" Width of row is called bit-width or wordsize Address is input, selected word is output +5V +5V +5V +5V n 2 -1 i Word Line 0011 Dec j Word Line 1010 Bit Lines n-1 Address ECE C03 Lecture 11 Internal Organization
21
ROMs vs PLAs Not unlike a PLA structure with a fully decoded
AND array! ROM vs. PLA: ROM approach advantageous when (1) design time is short (no need to minimize output functions) (2) most input combinations are needed (e.g., code converters) (3) little sharing of product terms among output functions ROM problem: size doubles for each additional input, can't use don't cares PLA approach advantangeous when (1) design tool like espresso is available (2) there are relatively few unique minterm combinations (3) many minterms are shared among the output functions PAL problem: constrained fan-ins on OR planes ECE C03 Lecture 11
22
Read-Only Memories 2764 EPROM 8K x 8 16K x 16 Subsystem U3 U2 U1 U0
+ 2764 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 O0 O1 O2 O3 O4 O5 O6 O7 OE CS PGM VPP A10 A11 A12 A5 A6 A7 A8 A9 O0 O1 O2 O3 O4 O5 O6 O7 OE CS PGM VPP A10 A11 A12 + A13 /OE A12:A0 U3 U2 D15:D8 D7:D0 U1 U0 16K x 16 Subsystem ECE C03 Lecture 11
23
Implementing Logic with ROMs
F0 = A' B' C + A B' C' + A B' C F1 = A' B' C + A' B C' + A B C F2 = A' B' C' + A' B' C + A B' C' F3 = A' B C + A B' C' + A B C' by ECE C03 Lecture 11
24
Summary Random Access Memories (RAMS) Static RAMs Dynamic RAMS
Memory Organizations Read-Only Memories (ROMS) NEXT LECTURE: Finite State Machine Design READING: Katz 8.1, 8.2, 8.4, 8.5, Dewey 9.1, 9.2 ECE C03 Lecture 11
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.