# 講者： 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

## Presentation on theme: "講者： 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2."— Presentation transcript:

Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2

Conformal mapping ( 請預讀 P368~P370) 3

Conformal mapping (continue) Based on Cauchy-Riemann conditions, we get  2 u=0=  2 v,  u   v=0. They are orthogonal to each other  The curves u=constant and v=constant are orthogonal to each other. Example: w=z 2 =(x 2 -y 2 )+2ixy Code: z2_uv.mz2_uv.m y=sqrt(x 2 -u), y=v/(2x) Contour u= x 2 -y 2, v=2xy. 4 Proper rotation

Conformal Mapping (final) The mapping of w=z 2. From these figures, you will find that the contour lines of y=C and y=-C are the same in w-plane. Reason: z=re i  and z’=re i  i . z 2 =r 2 e i2  =z’ 2. Therefore, it has a two-to-one correspondence. 5

Mappings ( 請預讀 P360~P363) Linear Transformation: Translation: w=z+z 0. Rotation: w=cz=(r  r c )e i(  c ). Nonlinear Transformation: Inversion: w=1/z=1/r  e  i . … Code: mappings.mmappings.m 想像 w=z‘ 與 z 畫在同一個座標系 6

Exercise Prove that w=1/z will map a straight line in z-plane into a circle cross w=0. Try to add “z=z*(1+1i);x=real(z);y=imag(z);” into the code mappings.m to see the result. 7

Multivalent functions and Branch Points ( 請預讀 P363~P367) 8 Hint: Restrict the allowed range of  ’.

Multivalent functions and Branch Points (continue) 9 * 莊 ( 土斤 ) 泰，張南岳，復變函數

Multivalent functions and Branch Points (final) 10

Homework 6.6.2 6.6.3 6.6.5 6.6.6 6.6.7 6.7.1 6.7.4 11

Nouns 12

Download ppt "講者： 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2."

Similar presentations