Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lower bounds for small depth arithmetic circuits Chandan Saha Joint work with Neeraj Kayal (MSRI) Nutan Limaye (IITB) Srikanth Srinivasan (IITB)

Similar presentations


Presentation on theme: "Lower bounds for small depth arithmetic circuits Chandan Saha Joint work with Neeraj Kayal (MSRI) Nutan Limaye (IITB) Srikanth Srinivasan (IITB)"— Presentation transcript:

1 Lower bounds for small depth arithmetic circuits Chandan Saha Joint work with Neeraj Kayal (MSRI) Nutan Limaye (IITB) Srikanth Srinivasan (IITB)

2 Arithmetic Circuit: A model of computation + xxxx ++++ xxxx …. ….. x1x1 x2x2 x n-1 xnxn f(x 1, x 2, …, x n )--> multivariate polynomial in x 1, …, x n x g h gh + g h g+h Product gate Sum gate There are `field constants’ on the wires

3 Arithmetic Circuit: A model of computation + xxxx ++++ xxxx …. ….. x1x1 x2x2 x n-1 xnxn f(x 1, x 2, …, x n ) Depth = 4

4 Arithmetic Circuit: A model of computation + xxxx ++++ xxxx …. ….. x1x1 x2x2 x n-1 xnxn f(x 1, x 2, …, x n ) Size = no. of gates and wires

5 The lower bound question Is there an explicit family of n-variate, poly(n) degree polynomials {f n } that requires… …super-polynomial in n circuit size ?

6 The lower bound question Is there an explicit family of n-variate, poly(n) degree polynomials {f n } that requires… …super-polynomial in n circuit size ? Note : A random polynomial has super-poly(n) circuit size

7 The Permanent – an explicit family Perm n = ∑ ∏ x i σ(i) σ є S n i є [n]

8 The Permanent – an explicit family Degree of Perm n is low. i.e. bounded by poly(n) Perm n = ∑ ∏ x i σ(i) σ є S n i є [n]

9 The Permanent – an explicit family Degree of Perm n is low. Coefficient of any given monomial can be found efficiently. …given a monomial, there’s a poly-time algorithm to determine the coefficient of the monomial. Perm n = ∑ ∏ x i σ(i) σ є S n i є [n]

10 The Permanent – an explicit family Degree of Perm n is low. Coefficient of any given monomial can be found efficiently. These two properties characterize explicitness Perm n = ∑ ∏ x i σ(i) σ є S n i є [n]

11 The Permanent – an explicit family Degree of Perm n is low. Coefficient of any given monomial can be found efficiently. Define class VNP Perm n = ∑ ∏ x i σ(i) σ є S n i є [n]

12 The Permanent – an explicit family Degree of Perm n is low. Coefficient of any given monomial can be found efficiently. Define class VNP Perm n = ∑ ∏ x i σ(i) σ є S n i є [n] Class VP: Contains families of low degree polynomials {f n } that can be computed by poly(n)-size circuits.

13 The Permanent – an explicit family Degree of Perm n is low. Coefficient of any given monomial can be found efficiently. Perm n = ∑ ∏ x i σ(i) σ є S n i є [n] VP vs VNP: Does Perm n family require super-poly(n) size circuits?

14 A strategy for proving arithmetic circuit lower bound Step 1: Depth reduction Step 2: Lower bound for small depth circuits

15 A strategy for proving arithmetic circuit lower bound Step 1: Depth reduction Step 2: Lower bound for small depth circuits

16 Notations and Terminologies Notations: n = no. of variables in f n d = degree bound on f n = n O(1) Homogeneous polynomial: A polynomial is homogeneous if all its monomials have the same degree (say, d). Homogeneous circuits: A circuit is homogeneous if every gate outputs/computes a homogeneous polynomial. Multilinear polynomial: In every monomial, degree of every variable is at most 1.

17 Reduction to depth ≈ log d Valiant, Skyum, Berkowitz, Rackoff (1983). Homogeneous, degree d, f n computed by poly(n) circuit f n computed by homogeneous poly(n) circuit of depth O(log d) arbitrary depth ≈ log d poly(n)

18 Reduction to depth 4 Agrawal, Vinay (2008); Koiran (2010); Tavenas (2013). Homogeneous, degree d, f n computed by poly(n) circuit f n computed by homogeneous depth 4 circuit of size n O(√d) ≈ log d 4 n O(√d) poly(n)

19 Reduction to depth 4 Agrawal, Vinay (2008); Koiran (2010); Tavenas (2013). Homogeneous, degree d, f n computed by poly(n) circuit f n computed by homogeneous depth 4 circuit of size n O(√d) ≈ log d 4 n O(√d) poly(n) … f n can have n O(d) monomials !

20 A depth 4 circuit + xxxx ++++ xxxx …. ….. x1x1 x2x2 x n-1 xnxn ∑ ∏ ∑ ∏

21 A depth 4 circuit + xxxx ++++ xxxx …. ….. x1x1 x2x2 x n-1 xnxn ∑ ∏ Q ij ij sum of monomials Q ij

22 Reduction to depth 3 Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas (2013). Homogeneous, degree d, f n computed by poly(n) circuit f n computed by depth 3 circuit of size n O(√d) 3 n O(√d) 4

23 Reduction to depth 3 Gupta, Kamath, Kayal, Saptharishi (2013); Tavenas (2013). Homogeneous, degree d, f n computed by poly(n) circuit f n computed by depth 3 circuit of size n O(√d) 3 n O(√d) 4 not homogeneous!

24 A depth 3 circuit + xxxx ++++ …. x1x1 x2x2 x n-1 xnxn ∑ ∏ l ij ij linear polynomial l ij bottom fanin

25 Implication of the depth reductions Let {f n } be an explicit family of polynomials. if f n takes n ω(√d) size homogeneous if f n takes n ω(√d) size VP ≠ VNP or 4 3

26 A strategy for proving arithmetic circuit lower bound Step 1: Depth reduction Step 2: Lower bound for small depth circuits

27 Lower bound for homogeneous depth 4 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… …any homogeneous depth-4 circuit computing f n has size n Ω(√d) size = n Ω(√d) 4 fnfn

28 Lower bound for homogeneous depth 4 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… …any homogeneous depth-4 circuit computing f n has size n Ω(√d) size = n Ω(√d) 4 fnfn f n = i ∑ ∏ Q ij … has size n Ω(√d) j sum of monomials

29 Lower bound for homogeneous depth 4 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… …any homogeneous depth-4 circuit computing f n has size n Ω(√d) size = n Ω(√d) 4 fnfn …joint work with Kayal, Limaye, Srinivasan

30 Lower bound for homogeneous depth 4 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… …any homogeneous depth-4 circuit computing f n has size n Ω(√d) size = n Ω(√d) 4 fnfn …the technique appears to be using homogeneity crucially

31 Lower bound for depth 3 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… any depth-3 circuit (bottom fanin ≤ √d) computing f n has size n Ω(√d) size = n Ω(√d) 3 fnfn

32 Lower bound for depth 3 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… any depth-3 circuit (bottom fanin ≤ √d) computing f n has size n Ω(√d) size = n Ω(√d) 3 fnfn needn’t be homogeneous

33 Lower bound for depth 3 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… any depth-3 circuit (bottom fanin ≤ √d) computing f n has size n Ω(√d) size = n Ω(√d) 3 fnfn Note: Even for bottom fanin ≤ √d, depth-3 circuits n ω(√d) VP ≠ VNP

34 Lower bound for depth 3 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… any depth-3 circuit (bottom fanin ≤ t) computing f n has size n Ω(d/t) size = n Ω(d/t) 3 fnfn …joint work with Kayal

35 Lower bound for depth 3 Theorem: There is a family of homogeneous polynomials {f n } in VNP (with deg f n = d) such that… any depth-3 circuit (bottom fanin ≤ t) computing f n has size n Ω(d/t) size = n Ω(d/t) 3 fnfn … answers a question by Shpilka & Wigderson (1999)

36 Proof ideas

37 Homogeneous depth-4 lower bound

38 Complexity measure A measure is a function μ: F[x 1, …, x n ] -> R. We wish to find a measure μ such that 1.If C is a circuit (say, a depth 4 circuit) then μ(C) ≤ s. “small quantity”, where s = size(C) 2.For an “explicit” polynomial f n, μ(f n ) ≥ “large quantity” Implication: If C = f n then s ≥ “large quantity” “small quantity”  Upper bound  Lower bound

39 Some complexity measures Measure Model Partial derivatives (Nisan & Wigderson) homogeneous depth-3 circuits Evaluation dimension (Raz) multilinear formulas Hessian (Mignon & Ressayre) determinantal complexity permanent Jacobian (Agrawal et. al.) occur-k, depth-4 circuits Incomplete list ?

40 Some complexity measures Measure Model Partial derivatives (Nisan & Wigderson) homogeneous depth-3 circuits Evaluation dimension (Raz) multilinear formulas Hessian (Mignon & Ressayre) determinantal complexity permanent Jacobian (Agrawal et. al.) occur-k, depth-4 circuits Shifted partials (Kayal; Gupta et. al.) homog. depth-4 with low bottom fanin Projected shifted partials homogeneous depth-4 circuits; depth-3 circuits (with low bottom fanin)

41 Space of Partial Derivatives Notations: ∂ =k f : Set of all k th order derivatives of f(x 1, …, x n ) : The vector space spanned by F-linear combinations of polynomials in S Definition: PD k (f) = dim( ) Sub-additive property: PD k (f 1 + f 2 ) ≤ PD k (f 1 ) + PD k (f 2 )

42 Space of Shifted Partials Notation: x =ℓ = Set of all monomials of degree ℓ Definition: SP k,ℓ (f) := dim ( ) Sub-additivity: SP k,ℓ (f 1 + f 2 ) ≤ SP k,ℓ (f 1 ) + SP k,ℓ (f 2 )

43 Space of Shifted Partials Notation: x =ℓ = Set of all monomials of degree ℓ Definition: SP k,ℓ (f) := dim ( ) Sub-additivity: SP k,ℓ (f 1 + f 2 ) ≤ SP k,ℓ (f 1 ) + SP k,ℓ (f 2 ) Why do we expect SP(C) to be small ?

44 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Q ij = Sum of monomials

45 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Observation: ∂ =k Q i1 …Q im has “many roots” if k << m << n … any common root of Q i1 …Q im is also a common root of ∂ =k Q i1 …Q im

46 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Observation: Dimension of the variety of ∂ =k Q i1 …Q im is large if k << m << n

47 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Observation: Dimension of the variety of ∂ =k Q i1 …Q im is large if k << m << n [Hilbert’s] Theorem (informal): If dimension of the variety of {g} is large then dim ( ) is small.

48 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Observation: Dimension of the variety of ∂ =k Q i1 …Q im is large if k << m << n [Hilbert’s] Theorem (informal): If dimension of the variety of {g} is large then dim ( ) is small. … so we expect SP k,ℓ (Q i1 …Q im ) to be a `small quantity’

49 Shifted partials – the intuition C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Observation: Dimension of the variety of ∂ =k Q i1 …Q im is large if k << m << n [Hilbert’s] Theorem (informal): If dimension of the variety of {g} is large then dim ( ) is small. … by subadditivity, SP k,ℓ (C) ≤ s. `small quantity’

50 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Q ij = Sum of monomials of degree ≤ t (w.l.o.g m ≤ 2d/t )

51 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … degree ≤ k.t

52 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … at most ( ) terms m k

53 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … u. ∂ =k Q i1 …Q im = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … X degree = ℓ degree ≤ ℓ + k.t

54 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … u. ∂ =k Q i1 …Q im = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … X n + ℓ + kt n m k SP k,ℓ (Q i1 …Q im ) ≤ ( ). ( )

55 Depth-4 with low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … u. ∂ =k Q i1 …Q im = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … X n + ℓ + kt n m k SP k,ℓ (C) ≤ s. ( ). ( )  Upper bound

56 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm (homog. depth 4) Q ij = Sum of monomials (NO degree restriction)

57 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Idea: Reduce to the case of low bottom degree using Random restriction Multilinear projection

58 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Random restriction: Set every variable to zero independently at random with a certain probability. …denoted naturally by a map σ

59 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Random restriction: Set every variable to zero independently at random with a certain probability. …denoted naturally by a map σ σ(C) = σ(Q 11 ) σ(Q 12 )…σ(Q 1m ) + … + σ(Q s1 ) σ(Q s2 )…σ(Q sm ) Obs: If a monomial u has many variables (high support) then σ(u) = 0 w.h.p

60 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Random restriction: Set every variable to zero independently at random with a certain probability. …denoted naturally by a map σ σ(C) = σ(Q 11 ) σ(Q 12 )…σ(Q 1m ) + … + σ(Q s1 ) σ(Q s2 )…σ(Q sm ) w.l.o.g σ(Q ij ) = sum of ‘low support’ monomials

61 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Random restriction: Set every variable to zero independently at random with a certain probability. Homogeneous depth 4  homogenous depth 4 with low bottom support … w.l.o.g assume that C has low bottom support

62 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Projection map: π (g) = sum of the multilinear monomials in g

63 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Projection map: π (g) = sum of the multilinear monomials in g Observation: π (sum of ‘low support’ monomials) = sum of ‘low degree’ monomials

64 Reduction to low bottom degree C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Projection map: π (g) = sum of the multilinear monomials in g Observation: π (Q ij ) = sum of ‘low degree’ monomials

65 Projected Shifted Partials PSP k,ℓ (f) := dim (π (x =ℓ. ∂ =k f) ) (obeys subadditivity)

66 Projected Shifted Partials PSP k,ℓ (f) := dim (π (x =ℓ. ∂ =k f) ) (obeys subadditivity) multilinear shifts only!

67 Projected Shifted Partials PSP k,ℓ (f) := dim (π (x =ℓ. ∂ =k f) ) (obeys subadditivity) multilinear derivatives!

68 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm support of every monomial bounded by t

69 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Every variable in every monomial has degree 2 or less

70 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Every monomial has a variable with degree 3 or more

71 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Q i1 Q i2 …Q im = Q’ i1 Q’ i2 …Q’ im + Every monomial has a variable with degree 3 or more

72 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Q i1 Q i2 …Q im = Q’ i1 Q’ i2 …Q’ im + PSP k,ℓ (Q i1 Q i2 …Q im ) ≤ PSP k,ℓ (Q’ i1 Q’ i2 …Q’ im ) + PSP k,ℓ ( )

73 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Q i1 Q i2 …Q im = Q’ i1 Q’ i2 …Q’ im + PSP k,ℓ (Q i1 Q i2 …Q im ) ≤ PSP k,ℓ (Q’ i1 Q’ i2 …Q’ im ) + PSP k,ℓ ( ) 0

74 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Q i1 Q i2 …Q im = Q’ i1 Q’ i2 …Q’ im + PSP k,ℓ (Q i1 Q i2 …Q im ) ≤ PSP k,ℓ (Q’ i1 Q’ i2 …Q’ im ) + PSP k,ℓ ( ) 0 degree ≤ 2t

75 Depth-4 with low bottom support C = Q 11 Q 12 …Q 1m + … + Q s1 Q s2 …Q sm Q ij = Q’ ij + Q i1 Q i2 …Q im = Q’ i1 Q’ i2 …Q’ im + PSP k,ℓ (Q i1 Q i2 …Q im ) ≤ PSP k,ℓ (Q’ i1 Q’ i2 …Q’ im ) Abusing notation: Call Q’ ij as Q ij

76 Depth-4 with low bottom support ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … degree ≤ 2kt

77 Depth-4 with low bottom support ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … u. ∂ =k Q i1 …Q im = u. Q i k+1 … Q im + u. Q i1 Q i k+2 … Q im + X degree = ℓ degree ≤ 2kt

78 Depth-4 with low bottom support ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … π(u.∂ =k Q i1 …Q im ) = π( Q i k+1 … Q im ) + π( Q i1 Q i k+2 … Q im ) + X multilinear, degree ≤ ℓ + 2k.t

79 Depth-4 with low bottom support ∂ =k Q i1 …Q im = Q i1 Q i2 …Q ik …Q im + Q i1 Q i2 …Q ik Q i k+1 …Q im + … X...... = Q i k+1 … Q im + Q i1 Q i k+2 … Q im + … π(u.∂ =k Q i1 …Q im ) = π( Q i k+1 … Q im ) + π( Q i1 Q i k+2 … Q im ) + X  Upper bound ℓ + 2kt n m k SP k,ℓ (C) ≤ s. ( ). ( )

80 How large can PSP(f) be? Trivially, PSP k,ℓ (f) ≤ min { ( ).( ), ( ) } n k n ℓ n ℓ + d - k

81 How large can PSP(f) be? Trivially, PSP k,ℓ (f) ≤ min { ( ).( ), ( ) } n k n ℓ n ℓ + d - k Size of the set { x =ℓ. ∂ =k f } ≤ ( ).( ) Number of monomials in any polynomial in π (x =ℓ. ∂ =k f) ≤ ( ) n k n ℓ n ℓ + d - k Let f be a multilinear polynomial

82 How large can PSP(f) be? Trivially, PSP k,ℓ (f) ≤ min { ( ).( ), ( ) } Best lower bound for s s ≥ n k n ℓ n ℓ + d - k min {( ).( ), ( )} ( ).( ) m k n ℓ + 2kt n k n ℓ n ℓ + d - k = n Ω(d/t) After setting k and ℓ appropriately

83 How large can PSP(f) be? Trivially, PSP k,ℓ (f) ≤ min { ( ).( ), ( ) } Best lower bound for s s ≥ There’s an explicit f such that PSP k,ℓ (f) is close to the trivial upper bound.  (lower bound) n k n ℓ n ℓ + d - k min {( ).( ), ( )} ( ).( ) m k n ℓ + 2kt n k n ℓ n ℓ + d - k = n Ω(d/t)

84 Depth-3 lower bound

85 Trading depth for homogeneity Idea: Depth-3 with low bottom fanin Homogeneous depth-4 with low bottom support Size = s Bottom fanin = t 3 fnfn 4 (homogeneous) fnfn Size = s. 2 O(√d) Bottom support = t

86 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) C = α 1.(1 + l 11 )(1 + l 12 )…(1 + l 1m ) + …. + α s.(1 + l s1 )(1 + l s2 )…(1 + l sm ) linear forms field constants

87 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) C = (1 + l 11 )(1 + l 12 )…(1 + l 1m ) + …. + (1 + l s1 )(1 + l s2 )…(1 + l sm ) Notation: [g] d = d-th homogeneous part of g Easy observation: If C = f, which is homogeneous deg d polynomial, then [C] d = f.

88 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) C = (1 + l 11 )(1 + l 12 )…(1 + l 1m ) + …. + (1 + l s1 )(1 + l s2 )…(1 + l sm ) [C] d = [(1 + l 11 )(1 + l 12 )…(1 + l 1m )] d +….+ [(1 + l s1 )(1 + l s2 )…(1 + l sm )] d idea: transform these to homogeneous depth-4

89 Newton’s identities E d (y 1, y 2, …, y m ) := ∑ ∏ y j P r (y 1, y 2, …, y m ) := ∑ y j r S in 2 [m] |S| = d j in S (elementary symmetric polynomial of degree d) j in [m] (power symmetric polynomial of degree r)

90 Newton’s identities E d (y 1, y 2, …, y m ) := ∑ ∏ y j P r (y 1, y 2, …, y m ) := ∑ y j r S in 2 [m] |S| = d j in S j in [m] Lemma: E d (y) = ∑ β a ∏ P r (y) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar e.g. 2y 1 y 2 = (y 1 + y 2 ) 2 – y 1 2 – y 2 2 = P 1 2 – P 2 field constant

91 Newton’s identities E d (y 1, y 2, …, y m ) := ∑ ∏ y j P r (y 1, y 2, …, y m ) := ∑ y j r S in 2 [m] |S| = d j in S j in [m] Lemma: E d (y) = ∑ β a ∏ P r (y) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar Hardy-Ramanujan estimate: The number of a = (a 1, …, a d ) such that ∑ r.a r = d is 2 O(√d)

92 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) [(1 + l i1 )(1 + l i2 )…(1 + l im )] d = E d ( l i1, …, l im ) = ∑ β a ∏ P r ( l i1, …, l im ) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar 2 O(√d) summands

93 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) [(1 + l i1 )(1 + l i2 )…(1 + l im )] d = E d ( l i1, …, l im ) = ∑ β a ∏ P r ( l i1, …, l im ) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar 2 O(√d) summands Suppose every l ij has at most t variables, then…

94 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) [(1 + l i1 )(1 + l i2 )…(1 + l im )] d = E d ( l i1, …, l im ) = ∑ β a ∏ P r ( l i1, …, l im ) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar = ∑ β a ∏ Q i,a,r a = (a 1, …, a d ) ∑ r. a r = d r in [d] every monomial has support ≤ t

95 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) [(1 + l i1 )(1 + l i2 )…(1 + l im )] d = E d ( l i1, …, l im ) = ∑ β a ∏ P r ( l i1, …, l im ) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar = ∑ β a ∏ Q i,a,r a = (a 1, …, a d ) ∑ r. a r = d r in [d] [C] d = ∑ ∑ β a ∏ Q i,a,r a = (a 1, …, a d ) ∑ r. a r = d r in [d] i in [s]

96 Depth-3 to Depth-4 Implicit in Shpilka & Wigderson ; Hrubes & Yehudayoff (2011) [(1 + l i1 )(1 + l i2 )…(1 + l im )] d = E d ( l i1, …, l im ) = ∑ β a ∏ P r ( l i1, …, l im ) a = (a 1, …, a d ) ∑ r. a r = d r in [d] arar = ∑ β a ∏ Q i,a,r a = (a 1, …, a d ) ∑ r. a r = d r in [d] [C] d = ∑ ∑ β a ∏ Q i,a,r a = (a 1, …, a d ) ∑ r. a r = d r in [d] i in [s] Homogeneous depth-4 with low bottom support and size s.2 Ω(√d)

97 An explicit family with high PSP k,ℓ

98 An explicit family of polynomials Nisan-Wigderson family of polynomials: NW r := ∑ ∏ x i, h(i) d2d2 h(z) in F [z], deg(h) ≤ r i in [d] identifying the elements of F with {1,2, …, d 2 } d2d2

99 An explicit family of polynomials Nisan-Wigderson family of polynomials: NW r := ∑ ∏ x i, h(i) d2d2 h(z) in F [z], deg(h) ≤ r i in [d] `Disjointness’ property: Two monomials can share at most r ≈ d/3 variables. = + + … d r r d 2(r+1) monomials

100 Projected Shifted Partials of NW r The set π (x =ℓ. ∂ =k NW r ) has ( ).( ) elements. Every polynomial in π (x =ℓ. ∂ =k NW r ) is multilinear & homogeneous of degree (ℓ + d – k). n k n ℓ

101 Projected Shifted Partials of NW r The set π (x =ℓ. ∂ =k NW r ) has ( ).( ) elements. Every polynomial in π (x =ℓ. ∂ =k NW r ) is multilinear & homogeneous of degree (ℓ + d – k). PSP k,ℓ (NW r ) = rank (M) n k n ℓ M := ( ).( ) rows π (x =ℓ. ∂ =k NW r ) (0/1)-matrix of coefficients n ℓ + d - k ( ) columns n k n ℓ

102 Projected Shifted Partials of NW r Because of the `disjointness property’ of NW r, the columns of M are almost orthogonal. Hence, B := M T M is diagonally dominant. Observe, rank (M) ≥ rank (B).

103 Projected Shifted Partials of NW r Because of the `disjointness property’ of NW r, the columns of M are almost orthogonal. Hence, B := M T M is diagonally dominant. Observe, rank (M) ≥ rank (B). Alon’s rank bound (for diagonally dominant matrix): If B is a real symmetric matrix then rank (B) ≥ Tr (B) 2 Tr (B 2 )

104 Projected Shifted Partials of NW r [Main lemma]: Using Alon’s bound and settings r, k and ℓ appropriately, PSP k,ℓ (NW r ) ≥ η. min {( ).( ), ( )} n k n ℓ n ℓ + d - k small factor

105 An explicit family in VP [Kumar-Saraf (2014)] : Showed the same lower bound using the Iterated Matrix multiplication polynomial, which is in VP

106 An explicit family in VP [Kumar-Saraf (2014)] : Showed the same lower bound using the Iterated Matrix multiplication polynomial, which is in VP VNP Circuits (VP) ABPs Formulas Depth-4 exponential separation

107 An explicit family in VP [Kumar-Saraf (2014)] : Showed the same lower bound using the Iterated Matrix multiplication polynomial, which is in VP VNP Circuits (VP) ABPs Formulas Open: separation ? …known in the multilinear setting [Dvir, Malod, Perifel, Yehudayoff (2012)]

108 An explicit family in VP [Kumar-Saraf (2014)] : Showed the same lower bound using the Iterated Matrix multiplication polynomial, which is in VP VNP Circuits (VP) ABPs Formulas Open: separation ? …improve n Ω(√d) to n ω(√d)

109 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits (i.e. without the low bottom fanin restriction).

110 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits. 2.Prove a n Ω(√d) lower bound for homogeneous depth-5 circuits. [open problem in Nisan & Wigderson (1996)] (2)  (1)

111 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits. 2.Prove a n Ω(√d) lower bound for homogeneous depth-5 circuits. 3.Prove a n Ω(d) lower bound for multilinear depth-3 circuits. (current best is 2 Ω(d) ) …interestingly, one can get this using PSP measure

112 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits. 2.Prove a n Ω(√d) lower bound for homogeneous depth-5 circuits. 3.Prove a n Ω(d) lower bound for multilinear depth-3 circuits. 4.A separation between homogeneous formulas and homogeneous depth-4 formulas.

113 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits. 2.Prove a n Ω(√d) lower bound for homogeneous depth-5 circuits. 3.Prove a n Ω(d) lower bound for multilinear depth-3 circuits. 4.A separation between homogeneous formulas and homogeneous depth-4 formulas. 5.A separation between homogeneous formulas and multilinear homogeneous formulas. …exhibiting the power of non-multilinearity

114 Some other open questions 1.Prove a n Ω(√d) lower bound for general depth-3 circuits. 2.Prove a n Ω(√d) lower bound for homogeneous depth-5 circuits. 3.Prove a n Ω(d) lower bound for multilinear depth-3 circuits. 4.A separation between homogeneous formulas and homogeneous depth-4 formulas. 5.A separation between homogeneous formulas and multilinear homogeneous formulas. Thanks!


Download ppt "Lower bounds for small depth arithmetic circuits Chandan Saha Joint work with Neeraj Kayal (MSRI) Nutan Limaye (IITB) Srikanth Srinivasan (IITB)"

Similar presentations


Ads by Google