Presentation is loading. Please wait.

Presentation is loading. Please wait.

Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of.

Similar presentations


Presentation on theme: "Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of."— Presentation transcript:

1 Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of Databases for a User- and an RTCM-3.1 Service based GNSS-Positioning    Reiner Jäger Hochschule Karlsruhe Technik und Wirtschaft - University of Applied Sciences Faculty of Geomatics Studiengang Vermessung und Geomatik & International Programme Geomatics (MSc) Institut für Angewandte Forschung (IAF) Moltkestrasse 30, D Karlsruhe

2 Situation of GNSS for a Global Positioning
GPS GALILEO 2014 GLONASS 30 Satellites 2010 COMPASS GNSS - Systeme „BeiDou-1/2“ 14-April-07

3 ITRS <= International GNSS Service (IGS)
„Monthly Coordinate Files“ (Internet) ETRS89 =: ITRS1989_ <_1_cm Consistency!

4 European GNSS- Services (ITRF-based, often ETRF89)
RTCM- Phase Corrections cm -Solutions __________________________________________ SAPOS® + ascos® SWIPOS® + SwissSat® : SwePos® CzePos® LatPos® MoldPos ® … Hungary, Poland, Slowenia, Romania, (East European States, Russia) ...many others worldwide!

5 GNSS-Positioning-Services …Siberian Positioning Service (SRPOS)
„ITRF-related“ e.g. ETRF89 GNSS-Networks in EURASIA: SAPOS®/Axio-Net/VRSNow® , SWIPOS®/SwissSat® … SwePos®, CzePos® ,LatPos®, CroPOS®, HePos® , … Hungary, Slowenia, Romania, Moldavia, …Siberian Positioning Service (SRPOS)

6 RTCM (for all types of corrections and accuracies)

7 GNSS-Reference Station Software „GNSS-Reference Station Software“
e.g. Spider (Leica Geosystems) GPSNet (Trimble)

8 GNSS-Services and RTCM-based Positioning
Basic GNSS-Data collected at the GNSS-Reference-Stations at a Time t-∆t 1. Area Correction Parameters (ACP) 2. Master-Auxiliary (MAX) RTCM 3.1 Observations- Corrections b 3. Virtual Reference Station (VRS) RTCM GNSS-Networking Software (B,L,h)GNSS-Datum NMEA String 1 - 2 cm

9 Space/Satellite Based Augmentation Systems (SBAS)
….. for DGNSS-Codemeasurements (DNGSS-Correction Standard RTCM or RTCA) … WAAS (USA),CNSS (China),GAGAN/IRNSS (India),QZSS/MSAS (Japan),SDCM (Russia)

10 Space/Satellite Based Augmentation Systems (SBAS)
….. for DGNSS-Codemeasurments (RTCM-2.0-Inhalt or RTCA) … WAAS (USA),CNSS (China),GAGAN/IRNSS (Indien),QZSS/MSAS (Japan),SDCM (Russland)

11 (RTCA as „SSR“-Corretions)
Space/Satellite Based Augmentation Systems (SBAS) ….. für DGNSS-Codemessungen (DNGSS-Korrekturen. Stanadrd RTCM oder RTCA) EGNOS (RTCA as „SSR“-Corretions) European WAAS alias „GNSS1“ GNSS2 =: GALILEO RTCA Grid-Representations of VTEC-Value IP IP … WAAS (USA),CNSS (China),GAGAN/IRNSS (India),QZSS/MSAS (Japan),SDCM (Russia

12 RTCM- and RTCA Corrections via Internet - NTRIP

13 EUREP-IP and IGS as European and worlwide Referencestationnetworks
RTCM3.1 OSR-Correction-Data for Code- and Phasenmeasurements Simple, far reaching and low cost entrances Into precise DGNSS- Positioning

14 EUREP-IP and IGS as European and worlwide Referencestationnetworks
RTCM3.1 OSR-Correction-Data for Code- and Phasenmeasurements

15 Precise Monitoring and Navigation of Objects

16 Precise Monitoring and Navigation of Objects

17 Precise Monitoring and Navigation of Objects
EUREF or IGS RTCM-Corrections NTRIP-Format Mobile Internet (USB-Stick) and InterNet GNSS-Radio

18 Precise Monitoring and Navigation of Objects

19 Absolute GNSS - Precise Point Positioning „PPP“
? End of the monopole of DGNSS - Reference Station Servcices ? Broadcast Standard IGS-Products („SSR“) + Code/Phase + Modelling Satellite Orbit: m Satellite Orbit: cm Satellite Clocks: m Satellite Clock: ns ns Ionosphere: m Ionosphere: m Troposphere: m Troposphere: cm State of „PPP“ in Postprocessing 24 h Observation time mm – cm 30 min observation time Beobachtungszeit: 0.5 – 1 dm Code Obser- vations ± 10m

20 Absolute GNSS Present Standard: Precise Point Positioning „PPP“
Static and postprocessed (30 Min = 0.05m) Absolute („NON-DGNSS) Upload of Data „C-Nav“ ( Kunden) „AUSPOS (free!)“ „Natural Ressources Canada“ Absolute GNSS in Trend: Online Precise Point Positioning „0PPP“ SSR-Provider Dynamical absolute GNSS „Online PPP“ (RTK Modus)“ GNSS Server-Client for SSR LowCost GNSS-Sensors Derzeit ? 1 dm … 1 cm ? < 2 m !

21 Absolute GNSS als Target: Online Precise Point Positioning „0PPP“

22 GNSS-Further Developments &Trends - LowCost
M. Becker, ZfV 10/09

23 GNSS-Further Developments &Trends - GNSS/INS Drones
Autonomous drones (below) for documentation of the state of different kind of facilities Autonomous GNSS- bzw. GNSS/INS- boatsdrone for hydrological application (right up and right down)

24 GNSS-Further Developments & Trends – Platform Orientation
Datenerfassung mit GNSS/INS-positionierten und orientierten Multisensor-Plattformen Entwicklung von Datenerfassungs- systemen für Facilites in Thesisarbeiten Kooperation mit der Industrie, z.B.

25 Indoor-Positionierung (WLAN u.a.)
GNSS-Further Developments&Trends – Seamless Out-/Indoor Positioning Indoor-Positionierung (WLAN u.a.) Nahtlose Indoor-Outdoor-Positionierung Entwicklungen mit der Industrie

26 Solutions – GNSS-Satellite Navigation and Mobile IT
Trends?

27 Solutions – GNSS-Satellite Navigation and Mobile IT

28 Deformation Integrity Monitoring for GNSSPositioning Services including a Scalable Hazard Monitoring by the Karlsruhe Approach (MONIKA)

29 Classical Datum Systems and ITRF - Transformations
Modern Georeferencing: Global Reference and GNSS-based ITRF-based Reference Systems Srict and General TRAFO (Enabled & GNSS-practice ITRF / ETRF89 - Datum Old Classical Systems

30 Present Transformation Problem

31 Present Transformation Problem
Brazilien Transformations- Projekt Strict and General TRAFO ITRF / SIRGAS - Datum Old Classical Systems

32 Plan Transformation Problem and Solution
PART1 Plan Transformation Problem and Solution

33 Present Transformation Problem

34 Solution of the Transformation Problem
3D Similarity Transformation Related to (B,L,h) Advantage: 1D or 2D or 3D identical points !!!

35 Germany West Strict 3D-Trafo in (B,L, (h)) Residuals Germany
Only 1 set of 7 parameters (= Without „Patching“) Mean Residual: 1.49 m Max. Residual: 2.43 m Longwaved Systematic Errors „Weak Shapes“

36 Marked ObservationTests
18 sets of 8 parameters („Patching“ in continuously modelled meshes) => Essential decrease of residuals => DFLBF/COPAG transformation parameter DB Residuals COPAG Software Marked ObservationTests

37 DFLBF_COPAG_DB – Hungaria

38 DFLBF_COPAG_DB – Accuray Surface, Hungaria
Software

39 Height Reference Surface Representation DFHRS-DataBases (DFHRS_DB)
PART 2 Height Reference Surface Representation (DFHRS Concept) and DFHRS-DataBases (DFHRS_DB)

40 Height Transformation Problem – GNSS Heighting
Geoid (HBF) Ellipsoid GNSS Heighting „H from h- GNNS“ H HRS h h N H = h - N(B,L,h) "Geoid" or better : HRS

41 DFHRS-Concept H = hGPS(B,L) - DFHRS(B,L,h) korr Direct - No Identical
Points - - Online - Postpro- cessed REALITY DFHRS-DB H = hGPS(B,L) - DFHRS(B,L,h) korr H = hGPS(B,L) - (NFEM(p|B,L,h) + ∆m·h)

42 DFRHS – Mathematical Model

43 Extension of the DFHRS-Concept to gravity observations
hGNSS+ v = H + fT  p hGPS· m H v = H NG‘j + v j = fT  p + NG(d j) NFEM(p) N(pk) j + v = - fBT / M(B)  p   (d,) j  j + v = - fLT/(N(B)cos(B))  p +  (d,) j g·S()dσ + v = NFEM(p)= fT  p

44 DFHRS Software Identical „Fitting“ Points (B,L,h;H) Meshes Patches

45 Weak-Shapes of Classical Gravimetric „Geoid“models 0.1 – 1.5 m !
EGG97 European Gravimetric Geoid 1997 Mean- up to lang-waved Errors 0.1 – 1.5 m ! => New Concepts, more „precise“ or better: (H,h)-fitted solutions

46 DFHRS_DB Design Parameters
Design Studies < _cm DFHRS Germany Patch-Size (EGG97) km for a < 1_cm DFHRS_DB 50 – 60 km for a < 3_cm DFHRS_DB 300 km for a < 10_cm DFHRS_DB (3-5) points per patch

47 Bilateral Cooperation Partner IBS
DFHBF-Data Bases Official State Databases e.g. in German Countries ... Bilateral Cooperation Partner IBS

48 < 10cm DFHRS Europe – „Fittingpoint-Design“
ETRS89/EVRS „GPS-/Levelling- Points of EVN“ Fitting Points NFEM(p) =: h - H Used for the 1st Version < 10_cm DFHBFS Europe

49 <(1-3)cm_DFHRS Baltics (Latvia, Estonia, Lithuania)
European HRS …. including <(1-3)cm_DFHRS Baltics (Latvia, Estonia, Lithuania) 10 km FEM Meshes Master Thesis of Mrs. Lauma Lace, Latvia at Karlsruhe University of Applied Sciences

50 European HRS… including < 3cm DFHRS_DB Germany 10 km FEM Meshes

51 < 1cm DFHRS_DB Germany < 1cm DFHRS_DB Luxembourg
… including < 1cm DFHRS_DB Germany < 1cm DFHRS_DB Luxembourg Official State Standard … over years 5 km FEM Meshes

52 DFHRS_DB - Product as CD-Installation of State Land Services in Germany
CopyProtection inclusive

53 European HRS… including
< (1-3) cm DFHRS_DB Ungary - Masterthesis in DFHRS-Project & Cooperationproject with A. Kenyeres, Fömi, Ungary 5 km FEM Meshes

54 DFHRS_DB USA

55 < 5 cm DFHRS_DB Florida (… Masterthesis )

56 DFLBF / DFHBF

57 DFLBF / DFHBF

58

59 RCTM3.0 Transformation Messages

60 RTCM 3.1 Observations Corrections & „7 RTCM Transformation Messages“
Transformation-Parameters (1021,1022) Residual-Grids and/or Geoid-Representations (1023,1024) Projection-Information (1025,1026,1027) sent by GNSS-Positioning-Service to GNSS-Positioning-User NMEA-based request to RTCM-Transformation Messages Server)

61 RCTM3.0 Transformation Messages
(φV, λV) ∆φV ∆λV RTCM 3.0 WG Chair: V. Wegener, LGN Scientific Member: R. Jäger SLS Member: L. Lijvall Company-Representatives Active ..Leica: Dr. Euler ..Trimble: Dr. H. Landau ..Geo++: Dr. Wübbena Corresponding .. Septentrio .. Thales .. TopCon ... Novatel RTCM-Commission: R. Kalafus Area of validity for 7P transformation: origin and extension

62 RCTM3.0 Transformation Messages

63 RCTM3.0 Transformation Messages

64 Gridding of Reference Transformations
Source CRS - Grid Target CRS - Grid Pi [(B,L)Class ] Reference Pi [(B,L,H)Class ] Transformations Pi [(B,L,h)GNSS ] Pi [N ] Pi [H=hGNSS - N ] Virtual Fitting Points Pi Virtual Fitting Points Pi Gridding 7 Para meter Trafo 7 Parameters 3 Residual Grid 1.] Grid of Ni 2.] Geoid/HRS Grid

65 RCTM 3.1 Transformation Messages – GZTra-Server and GZTra-Client

66 RCTM3.0 Transformation Messages
Technical Concept by AdV Germany and RTCM WG GNSS-User (to be transformed) Available 2007 Dial-Server GNSS-Network-SW (Spider, GPSNet, etc.) „Your“ Reference Transformation Setting up the RTCM-Message in a TCP/IP Client-Server Concept Dynamic Generation of RTCM-Grid (State Survey of Baden-Württemberg)

67 Reference Transformations
RCTM 3.1 Transformation Messages – GZTra-Server and GZTra-Client Reference Transformations DFHBF Florida DFHBF Bavaria DFLBF Bavaria


Download ppt "Precise Transformation of Classical Networks to ITRF by COPAG and Precise Vertical Reference Surface Representation by DFHRS Concepts and Realisation of."

Similar presentations


Ads by Google