Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Integer Multipliers. 2 Multipliers A must have circuit in most DSP applications A variety of multipliers exists that can be chosen based on their performance.

Similar presentations


Presentation on theme: "1 Integer Multipliers. 2 Multipliers A must have circuit in most DSP applications A variety of multipliers exists that can be chosen based on their performance."— Presentation transcript:

1 1 Integer Multipliers

2 2 Multipliers A must have circuit in most DSP applications A variety of multipliers exists that can be chosen based on their performance Serial, Serial/Parallel,Shift and Add, Array, Booth, Wallace Tree,….

3 3 16x16 multiplier converter Converter RB r e s e t e n converter RC e n r e s e t RA r e s e t e n

4 4 Multiplication Algorithm Yn-1X0 Yn-2X0 Yn-3X0 …… Y1X0 Y0X0 Yn-1X1 Yn-2X1 Yn-3X1 …… Y1X1 Y0X1 Yn-1X2 Yn-2X2 Yn-3X2 …… Y1X2 Y0X2 … … … … …. …. …. …. …. Yn-1Xn-2 Yn-2X0 n-2 Yn-3X n-2 …… Y1Xn-2 Y0Xn-2 Yn-1Xn-1 Yn-2X0n-1 Yn-3Xn-1 …… Y1Xn-1 Y0Xn-1 ----------------------------------------------------------------------------------------------------------------------------------------- P2n-1 P2n-2 P2n-3 P2 P1 P0 X= Xn-1 Xn-2 …………………X0 Multiplicand Y=Yn-1 Yn-2…………………….Y0 Multiplier

5 5 A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 A7.B2 A6.B2 A5.B2 A4.B2 A3.B2 A2.B2 A1.B2 A0.B2 A7.B3 A6.B3 A5.B3 A4.B3 A3.B3 A2.B3 A1.B3 A0.B3 A7.B4 A6.B4 A5.B4 A4.B4 A3.B4 A2.B4 A1.B4 A0.B4 A7.B5 A6.B5 A5.B5 A4.B5 A3.B5 A2.B5 A1.B5 A0.B5 1. Multiplication Algorithms Implementation of multiplication of binary numbers boils down to how to do the the additions. Consider the two 8 bit numbers A and B to generate the 16 bit product P. First generate the 64 partial Products and then add them up. A7.B0 A6.B0 A5.B0 A4.B0 A3.B0 A2.B0 A1.B0 A0.B0 A7.B1 A6.B1 A5.B1 A4.B1 A3.B1 A2.B1 A1.B1 A0.B1. A7.B6 A6.B6 A5.B6 A4.B6 A3.B6 A2.B6 A1.B6 A0.B6 A3.B7 A2.B7 A1.B7 A0.B7 A3.B7 A2.B7 A1.B7 A0.B7 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 The equation is :.

6 6 MU (16X16 Multiplier Unit) REGIN1 REGIN1 REG OUT REG OUT Control Unit Storage Multiplier Design

7 7 Slide 1 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

8 8 S i : the ith bit of the final result Slide 2 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

9 9 S i : the ith bit of the final result Slide 3 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

10 10 S i : the ith bit of the final result Slide 4 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

11 11 S i : the ith bit of the final result Slide 5 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

12 12 S i : the ith bit of the final result C i : the only carry from column i S i : the ith bit of the final result C i : the only carry from column i Slide 6 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

13 13 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 7 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

14 14 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 8 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

15 15 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 9 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

16 16 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 10 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

17 17 Slide 11 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

18 18 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 12 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

19 19 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 13 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

20 20 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 14 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

21 21 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 15 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

22 22 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 Slide 16

23 23 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 17 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

24 24 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 18 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

25 25 Slide 19 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

26 26 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 20 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

27 27 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 21 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

28 28 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 21 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000 X: x 3 x 2 x 1 x 0 Y:y 3 y 2 y 1 y 0 Input Sequence for G1: 00x 3 x 2 x 1 x 0 0 x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 0x 3 x 2 x 1 x 0 00y 3 y 3 y 3 y 3 0y 2 y 2 y 2 y 2 0y 1 y 1 y 1 y 1 0y 0 y 0 y 0 y 0 Reset:010000100001000010000

29 29 S i : the ith bit of the final result Slide 1

30 30 S i : the ith bit of the final result C i : the only carry from column i S i : the ith bit of the final result C i : the only carry from column i Slide 2

31 31 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 3

32 32 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 4

33 33 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 5

34 34 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 6

35 35 S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i S i : the ith bit of the final result C i : the only carry from column i S i j : the jth partial sum for column i C i j : the jth partial carry from column i Slide 7

36 36 S i : the ith bit of the final result C i : the only carry from column i S i : the ith bit of the final result C i : the only carry from column i Slide 8

37 37 8 bit Adder MUX 0 INPUT Ain (7 downto 0) REGA Result (7 downto 0) Result (15 downto 8) INPUT Bin (7 downto 0) CLOCK REGB REGC Shift Add Multiplier Design Implementation

38 38 Synchronous Shift and Add Multiplier controller  Multiplication process:  5 states: Idle, Init, Test, Add, and Shift&Count.  Idle: Starts by receiving the Start signal;  Init: Multiplicand and multiplier are loaded into a load register and a shift register, respectively;  Test: The LSB in the shift register which contains the multiplier is tested to decide the next state;

39 39 Synchronous Shift and Add Multiplier ControllerDesign  Add: If LSB is ‘1’, then next state is to add the new partial product to the accumulation result, and the state machine transits to shift&count state ;  Shift&Count: If LSB is ‘0’, then the two shift register shift their contains one bit right, and the counter counts up by one step. After that, the state machine transits back to test state;  When the counter reaches to N, a Stop signal is asserted and the state machine goes to the idle state;  Idle: In the idle state, a Done signal is asserted to indicate the end of multiplication.

40 40 Slide 1 n-bit Multiplier: Q 0 =1: Multiplicand is added to register A; the result is stored in register A; registers C, A, Q are shifted to the right one bit Q 0 =0: Registers C, A, Q are shifted to the right one bit n-bit Multiplier: Q 0 =1: Multiplicand is added to register A; the result is stored in register A; registers C, A, Q are shifted to the right one bit Q 0 =0: Registers C, A, Q are shifted to the right one bit

41 41 Slide 2 Example: 4-bit Multiplier Initial Values Example: 4-bit Multiplier Initial Values

42 42 Slide 3 Example: 4-bit Multiplier First Cycle--Add Example: 4-bit Multiplier First Cycle--Add

43 43 Slide 4 Example: 4-bit Multiplier First Cycle--Shift Example: 4-bit Multiplier First Cycle--Shift

44 44 Slide 5 Example: 4-bit Multiplier Second Cycle--Shift Example: 4-bit Multiplier Second Cycle--Shift

45 45 Slide 6 Example: 4-bit Multiplier Third Cycle--Add Example: 4-bit Multiplier Third Cycle--Add

46 46 Slide 7 Example: 4-bit Multiplier Third Cycle--Shift Example: 4-bit Multiplier Third Cycle--Shift

47 47 Slide 8 Example: 4-bit Multiplier Fourth Cycle--Add Example: 4-bit Multiplier Fourth Cycle--Add

48 48 Slide 9 Example: 4-bit Multiplier Fourth Cycle--Shift Example: 4-bit Multiplier Fourth Cycle--Shift

49 49 4*4 Synchronous Shift and Add Multiplier Design Layout Design Floor plan of the 4*4 Synchronous Shift and Add Multiplier

50 50 Comparison between Synchronous and Asynchronous Approaches.

51 51 Example : (simulated by Ovais Ahmed, Fall_03,project) Multiplicand = 10001001 2 =89 16 Multiplier =10101011 2 =AB 16 Expected Result =101101110000011 2 =5B83 16

52 52  Regular structure based on add and shift algorithm.  Addition is mainly done by carry save algorithm.  Sign bit extension results in a higher capacitive load and slows down the speed of the circuit. Array Multiplier

53 53 Addition with CLA

54 54 Array Multiplier with CSA

55 55 Critical Path with Array Multipliers HAFA HAFA HAFA Two of the possible paths for the Ripple-Carry based 4*4 Multiplier Area = (N*N) AND Gate + (N-1)N Full-Adder Delay = τ HA + (2N-1) τ FA

56 56

57 57 Wallace Tree

58 58 Array Multiplier + Wallace Tree

59 59 4/12/2015Concordia VLSI Lab59 Background  Baugh-Wooley Algorithm Convert negative partial products to positive representation No sign-extension required

60 60 4/12/2015Concordia VLSI Lab60 examples of 5-by-5 Baugh-Wooley

61 61 a7a6a5a4a3a2a1a0 *a7a6a5a4a3a2a1a0 --------- ---- a7*a0a6*a0a5*a0a4*a0a3*a0a2*a0a1*a0a0*a0 a7*a1a6*a1a5*a1a4*a1a3*a1a2*a1a1*a1a0*a1 a7*a2a6*a2a5*a2a4*a2a3*a2a2*a2a1*a2a0*a2 a7*a3a6*a3a5*a3a4*a3a3*a3a2*a3a1*a3a0*a3 a7*a4a6*a4a5*a4a4*a4a3*a4a2*a4a1*a4a0*a4 a7*a5a6*a5a5*a5a4*a5a3*a5a2*a5a1*a5a0*a5 a7*a6a6*a6a5*a6a4*a6a3*a6a2*a6a1*a6a0*a6 a7*a7a6*a7a5*a7a4*a7a3*a7a2*a7a1*a7a0*a7 --------- ---- a7*a6a7*a5a7*a4a7*a3a7*a2a7*a1a7*a0a6*a0a5*a0a4*a0a3*a0a2*a0a1*a0‘0'a0 a7*a7a6*a5a6*a4a6*a3a6*a2a6*a1a5*a1a4*a1a3*a1a2*a1a1*a1 a6*a6a5*a4a5*a3a5*a2a4*a2a3*a2a2*a2 a5*a5a4*a3a3*a3 a4*a4 S15, S14S13S12S11S10S9S8S7S6S5S4S3S2S1S0

62 62 Example of an 8bit squarer N*N N=8bits

63 63 Array Multiplier 32bits by 32bits multiplier

64 64 1 Booth (Radix-4) Multiplier  Radix-4 (3 bit recoding) reduces number of partial products to be added by half.  Great saving in area and increased speed. A = -a n-1 2 n-1 + a n-2 2 n-2 + a n-3 2 n-3 + …. + a 1 2 + a 0 B = -b n-1 2 n-1 + b n-2 2 n-2 + b n-3 2 n-3 + …. + b 1 2 + b 0 · Base 4 redundant sign digit representation of B is (n/2) - 1 B =  2 2i K i i = 0

65 65   K i is calculated by following equation K i = -2b 2i+1 + b 2i + b 2i-1 i = 0,1,2,….(n-2)/2  3 bits of Multiplier B, b 2i+1, b 2i, b 2i-1, are examined and corresponding K i is calculated.  B is always appended on the right with zero (b -1 = 0), and n is always even (B is sign extended if needed).  The product A  B is then obtained by adding n/2 partial products. (n/2) - 1 A  B= P =  2 2i K i A i = 0

66 66 Booth Algorithm Decoding of multiplier to generate signals for hardware use Xi+1XiXi-1OPNEGZEROTWO 0000010 1002101 0101000 1101100 0011000 1011100 0112001 1110110

67 67 Booth Algorithm A Booth recoded multiplier examines Three bits of the multiplicand at a time It determine whether to add zero, 1, -1, 2, or -2 of that rank of the multiplicand. The operation to be performed is based on the current two bits of the multiplicand and the previous bit X i+1 XX i-1 Z i/2 0000 0011 0101 0112 100-2 101 110 1110

68 68 BIT M is 2121 2020 2 -1 OPERATION multiplied XiXi X i+1 X i+2 by 000add zero (no string)+0 001add multipleic (end of string)+X 010add multiplic. (a string)+X 011add twice the mul. (end of string)+2X 100sub. twice the m. (beg. of string)-2X 101sub. the m. (-2X and +X)-X 110sub. the m. (beg. of string)-X 111sub. zero (center of string)-0

69 69 Booth Algorithm-a higher radix Multiplication Multiplicand A = ● ● ● ● Multiplier B = (●●)(●●) Partial product bits ● ● ● ● (B 1 B 0 ) 2 A4 0 Partial product bits ● ● ● ● (B 3 B 2 )A4 1 Product P = ● ● ● ● ● ● ● ●

70 70 The following example is used to show how the calculation is done properly. Multiplicand X = 000011 Multiplier Y = 011101 0 1 1 1 0 1 0 After booth decoding, Y is decoded as to multiply X by +2, -1, +1 separately, then shift the partial product two bits and add them together. X* +1 000000000011 X* -1 1111111101 X* +2 00000110 -------------------------------------------- 000001010111 Example Added to the multiplier

71 71 Sign Extension

72 72 4/12/2015Concordia VLSI Lab72 Sign extension  Traditional sign-extension scheme Segment the input operands based on the size of embedded blocks Multiply the segmented inputs and extend the sign bit of each partial products Sum all partial products Segmented input operands Sign extension × + Final result partial products Sign

73 73 Booth Algorithm-Example 1 Example 1:

74 74 Booth Algorithm Example 2 Notice sign extensions

75 75 Booth Algorithm-Example 3 Notice the sign extensions

76 76 Comparison of Booth and parallel multiplier shift and Add

77 77 Please note that each operand is 17 bit ie. the 17 th bit is the sign bit. Also negative numbers are entered as 1’s complement, this is why you need to add the S in the right hand side of the diagram. If you use 2’complement then the S’s on right side of the diagram can be removed Template to reduce sign extensions for Booth Algorithm For hardware implementation

78 78 Comparison of Template and the sign extension

79 79 Partial Product matrix generated for a 16 * 16 bit multiplication, Using booth and the template given in previous slide

80 80 Using the Template 25 * -35 Sign bit 0 0 0 1 1 0 0 1 Add SS 1 1 0 1 1 1 0 1 0 Add inverted S Add Inverted sign and add 1 1 0 0 0 0 0 1 1 0 0 1 * 1 Add Inverted sign bit 1 0 1 1 1 0 0 1 1 1 * -1 1 0 0 1 1 0 0 1 0 * 2 No sign bit 1 1 0 0 1 1 1 * -1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 This is a –ve number. Convert it 0 0 0 0 1 1 0 1 1 0 1 0 1 1 512 256 64 32 8 2 1 = 875 Example of using the template 25 * - 35 with -35 as the multiplier. Using 8 bit representation

81 81 Booth Multiplier Components Multiplier M ult ipl ic an d Booth Encoder PPU (Partial products unit) PPA (Partial products adding unit) Product

82 82 Wallace Tree and Ripple Carry Adder Structure. Of 8*8 multiplier With Pipeline

83 83 Hardware implementation of Booth with shift and add

84 84 Simulation Plan

85 85 Testing the Design

86 86 Simulation For Parallel Multipliers Signed Number: Unsigned Number:

87 87 Simulation For Signed S/P Multipliers There are 340 ns delay between the result and the operators because of the D flip-flops delay.

88 88 FPGA after implementation, areas of programming shown clearly

89 89 Another implementation of the above after pipelining, the place and rout has paced the design in different places.

90 90 Spartacus FPGA board

91 91 Testing the multiplication system

92 92 Comparison of Multipliers Table 7. Performance comparison for two ’ s complement multipliers By Chen Yaoquan, M.Eng. 2005 Array Multiplier Modified Booth Multiplier Wallace-Tree Multiplier Modified Booth- Wallace Tree Multiplier Twin Pipe Serial- Parallel Multiplier Behavioral Multiplier Area – Total CLB’s (#) 3076.502649.503325.502672.50490.002993.50 Maximum Delay D(ns) 35.7824.4318.9318.53107.52 (3.36x32)49.33 Total Dynamic Power P (W) 7.526.337.466.410.286.24 Delay ·Power Product (DP) (ns W) 268.98154.64141.14118.7630.62307.58 AreaPower Product (AP) (# W) 23128.2016771.6024793.9317127.79139.5418665.07 AreaDelay Product (AD) (# ns) 1.10E+056.47E+046.30E+044.95E+045.27E+041.48E+05 AreaDelay 2 Product (AD 2 ) (# ns 2 ) 3.94E+061.58E+061.19E+069.18E+055.66E+067.28E+06

93 93 Comparison of Multipliers Table 7. Performance comparison for Unsigned multipliers By Chen Yaoquan, M.Eng. 2005 Array Multiplier Modified Booth Multiplier Wallace-Tree Multiplier Modified Booth- Wallace Tree Multiplier Twin Pipe Serial- Parallel Multiplier Behavioral Multiplier Area – Total CLB’s (#) 3280.502800.003321.502845.50487.003003.00 Maximum Delay D(ns) 37.2325.3318.9318.33107.5244.50 Total Dynamic Power P (W) 7.576.667.326.660.296.26 Delay ·Power Product (DP) (ns W) 281.88168.77138.60122.1330.66278.53 AreaPower Product (AP) (# W) 24837.9818656.4024319.3618959.57138.8918795.78 AreaDelay Product (AD) (# ns) 1.22E+057.09E+046.29E+045.22E+045.24E+041.34E+05 AreaDelay 2 Product (AD 2 ) (# ns 2 ) 4.55E+061.80E+061.19E+069.56E+055.63E+065.95E+06

94 94 Comparison of Multipliers The relation of Area and Delay for behavioral multiplier -- "banana curve" Change the value of “set_max_delay” in Script file (ns) 0102030405060>60 Area(#)3014. 5 3013. 0 3110. 0 3193. 5 3019. 5 2999. 5 2978. 5 Power(w) 6.649 9 6.647 0 7.568 3 8.187 8 8.064 5 8.041 9 8.015 6 Delay(n s) 31.98 30.9330.0839.9349.8859.63

95 95 Comparison of Multipliers By Chen Yaoquan, M.Eng. 2005 Array Multiplier Modified Booth Multiplier Wallace- Tree Multiplier Modified Booth- Wallace Tree Multiplier Twin Pipe Serial- Parallel Multiplier Behavioral Multiplier Area MediumSmallLargeSmallSmallestMedium Critical Delay MediumFastVery FastFastestVery LargeLarge Power Consumption LargeMediumLargeMediumSmallestMedium Complexity SimpleComplex More Complex SimpleSimplest Implement EasyMediumDifficut EasyEasiest

96 96 Pipelining Simulation

97 97 Synthesis for Signed Multipliers Array Modified Booth Wallace Tree Modified Booth -Wallace Tree Twin Pipe S/P Behavioral

98 98 Synthesis for Unsigned Multipliers Array Modified Booth Wallace Tree Modified Booth -Wallace Tree Twin Pipe S/P Behavioral

99 99 Conclusion Modified Booth and Wallace Tree are the best techniques for high speed multiplication. Wallace Tree has the best performance, but it is hard to implement. Booth algorithm based multipliers have lower area among parallel multipliers. For behavioral multipliers, the area will increase while the delay decreases.

100 100 Comparison Array Multiplier Modified Booth Multiplier Wallace Tree Multiplier Modified Booth & Wallace Tree Multiplier Twin Pipe Serial- Parallel Multiplier Area – Total CLB’s (#) 1165129216591239133 Maximum Delay (ns) 187.87ns 139.41ns 101.14ns 101.43ns 22.58ns (722.56ns) Power Consumption at highest speed (mW) 16.6506m W (at 188ns) 23.136mW (at 140ns) 30.95mW (at 101.14ns) 30.862mW (at 101.43ns) 2.089mW (at 722.56ns) Delay  Power Product (DP) (ns mW) 3128.15 3225.39 3130.28 3130.33 1509.42 Area  Power Product (AP) (# mW) 19.397 x 10 3 29.891 x 10 3 51.346 x 10 3 38.238 x 10 3 277.837 Area  Delay Product (AD) (# ns) 218.868 x 10 3 180.118 x 10 3 167.791 x 10 3 125.671 x 10 3 96.101 x 10 3 Area  Delay 2 Product(AD 2 ) (# ns 2 ) 41.119 x 10 6 25.110 x 10 6 16.970 x 10 6 12.747 x 10 6 69.438 x 10 6

101 101 NOTICE  The rest of these slides are for extra information only and are not part of the lecture

102 102 Array Addition

103 103 Addition of 8 binary numbers using the Wallace tree principal

104 104

105 105

106 106

107 107 Baugh-Wooley two's complement multiplier:

108 108

109 109 Cluster Multipliers Divide the multiplier into smaller multipliers

110 110 Cluster Multipliers 8-bit cluster low power multiplier The circuit used to generate the enable signal

111 111 Cluster Multipliers Dividing the multiplication circuit into clusters (blocks) of smaller multipliers Applying clock gating techniques to disable the blocks that are producing a zero result. Features –Low Power (claims 13.4 % savings)

112 112 Multiplexer-Based Array Multipliers Z jZ j xjyjxjyj

113 113 Multiplexer-Based Array Multipliers Two types of cells: Cell 1: produce the terms Z i j 2 j and includes a full adder of carry save adder array Cell 2: produce the terms x j y j 2 j and includes a full adder of carry save adder array

114 114 Multiplexer-Based Array Multipliers Characteristics –Faster than Modified Booth –Unlike Booth, does not require encoding logic –Requires approximately N 2 /2 cells –Has a zigzag shape, thus not layout-friendly

115 115 Multiplexer-Based Array Multipliers Improvement –More rectangular layout –Save up to 40 percent area without penalties –Outperforms the modified Booth multiplier in both speed and power by 13% to 26%

116 116 Gray-Encoded Array Multiplier DecHybDecHybDecHybDecHyb 0000040100-81100-41000 1000150101-71101-31001 2001160111-61111-21011 3001070110-511101010 2’s complement Hybrid Coding –Having a single bit different for consecutive values –Reducing the number of transitions, and thus power ( for highly correlated streams ).

117 117 Gray-Encoded Array Multiplier An 8-bit wide 2’s complement radix-4 array multiplier

118 118 Gray-Encoded Array Multiplier Characteristics –Uses gray code to reduce the switching activity of multiplier –Saves 45.6% power than Modified Booth –Uses greater area(26.4% ) than Modified Booth

119 119 Ultra-high Speed Parallel Multiplier How to ultra-high speed? –Based on Modified Booth Algorithm and Tree Structure (Column compress) –Chooses efficient counters (3:2 and 5:3) –Uses the new compressor (faster 20% ) –Uses First Partial product Addition (FPA) Algorithm (reducing the bits of CLA by 50%)

120 120 Ultra-high Speed Parallel Multiplier Calculate the partial products as soon as possible. The final CLA is only 16-bit instead of 32-bit. Divide into 3 rows or 5 rows only (most efficient). Calculation process using parallel counter in case of 16x16 ---Totally reduce delay by about 30%

121 121 ULLRLF Multiplier ULLRLF stands for Upper/Lower Left-to- Right Leapfrog. Combine the following techniques: –Signal flow optimization in [3:2] adder array for partial product reduction, –Left-to-right leapfrog (LRLF) signal flow, –Splitting of the reduction array into upper/lower parts.

122 122 ULLRLF Multiplier 1)Signal flow optimization in [3:2] adder array -- For n = 32, the delay is reduced by 30 percent. -- The power is saved also. PP ij is always connected to pin A S in /C in are connected to B/C, most S in signals are connected to C

123 123 ULLRLF Multiplier 2) Left-to-Right Leapfrog (LRLF) Structure -- The delay of signals is more balanceable. -- Low power. The sum signals skip over alternate rows.

124 124 ULLRLF Multiplier 3) Upper/Lower Split Structure -- The long path of data path be broken into parallel short paths, there would be a saving in power. -- The delay of Partial Products Reduction is reduced. Only n+2 bits

125 125 ULLRLF Multiplier Floorplan of ULLRLF (n = 32) ULLRLF multipliers have less power than optimized tree multipliers for n ≤ 32 while keeping similar delay and area. With more regularity and inherently shorter interconnects, the ULLRLF structure presents a competitive alternative to tree structures.

126 126 Signed Array Multiplier

127 127 Unsigned Array Multiplier

128 128 Signed Modified Booth Multiplier

129 129 Signed Modified Booth Multiplier

130 130 Unsigned Modified Booth Multiplier

131 131 Unsigned Modified Booth Multiplier

132 132 Wallace Tree multipliers

133 133 Wallace Tree multipliers Use the 3:2 counters and 2:2 counters Number of levels of = log (32/2) / log (3/2) ≈8 Irregular structure Fast

134 134 Wallace Tree multipliers 2-level hierarchical

135 135 Modified Booth-Wallace Tree Multipliers

136 136 Modified Booth-Wallace Tree Multipliers Use the 3:2 counters and 2:2 counters Number of levels of = log (16/2) / log (3/2) ≈6 Irregular structure Fast Less area

137 137 Twin pipe serial-parallel multipliers

138 138 Signed twin pipe serial-parallel multipliers “Sign” control line and the sign-change hardware

139 139 Unsigned twin pipe serial-parallel multipliers Don’t need the “Sign” control line and the sign-change hardware


Download ppt "1 Integer Multipliers. 2 Multipliers A must have circuit in most DSP applications A variety of multipliers exists that can be chosen based on their performance."

Similar presentations


Ads by Google