Download presentation

Presentation is loading. Please wait.

Published byYosef Villar Modified over 3 years ago

1
Math 307 Spring, 2003 Hentzel Time: 1:10-2:00 MWF Room: 1324 Howe Hall Instructor: Irvin Roy Hentzel Office 432 Carver Phone 515-294-8141 E-mail: hentzel@iastate.edu http://www.math.iastate.edu/hentzel/class.307.ICN Text: Linear Algebra With Applications, Second Edition Otto Bretscher

2
Monday, Apr 7 Chapter 6.3 Page 286 Problems 1 through 44 Main Idea: Learn interesting uses of the determinant. Key Words: Expansion Factor, Cramer's Rule Goal: Learn to appreciate the Determinant's wonderful Qualities.

3
Previous Assignment Friday, April 4 Chapter 6.2 Page 266 Problem 4,14,46,48 Page 266 Problem 4 Find the determinant | 0 2 1 0 1 | | 0 0 2 0 2 | | 0 5 3 9 9 | | 0 7 4 0 1 | | 3 9 5 4 8 |

4
| 2 1 0 1 | 3 | 0 2 0 2 | | 5 3 9 9 | | 7 4 0 1 | | 2 1 1 | 3*9 | 0 2 2 | | 7 4 1 | | 2 1 1 | 3*9 | -4 0 0 | | 7 4 1 |

5
| 1 1 | 3*9*4 | 4 1 | 3*9*4*( - 3) = - 324

6
Page 266 Problem 14 | V1 | Det | V2 | = 8 | V3 | | V4 | | 6 V1 + 2 V4 | | 2(3V1+V4) | Find Det | V2 | = Det | V2 | | V3 | | V3 | | 3 V1 + V4 | | 3 V1 + V4 |

7
| 3V 1 + V 4 | = 2 Det | V 2 | = 0 | V 3 | | 3V 1 + V 4 |

8
Page 266 Problem 46 Find the determinant of the linear transformation T( f ( t ) ) = f( 3 t - 2 ) | t 2 t 1 ------+---------------------------------- t 2 | 9 - 12 4 | t | 0 3 - 2 | 1 | 0 0 1 Det [T] = 27

9
Page 266 Problem 48 Find the determinant of the linear transformation L(A) = A T from R 2x2 R 2x2 | E 11 E 12 E 21 E 22 --------+-------------------------------------- E 11 | 1 0 0 0 | E 12 | 0 0 1 0 | E 21 | 0 1 0 0 | E 22 | 0 0 0 1 Determinant = - 1.

10
Page 269 Example 1. What are the possible values of the determinant of an orthogonal matrix A? Answer 1 or - 1. 1 = Det [ I ] = Det[ A A T ] = Det [ A ] Det [ A T ] = Det [ A ] 2 Therefore Det [ A ] = +1 or - 1.

11
For the plane or 3 dimensions, those with determinant +1 are rotations. Those with determinant -1 involve reflections.

12
Page 270 Example 2. I really am not sure I grasp what the book is presenting. I presume it is this. _______________ _ _/ \ / \ / \ \ / \ U/ \ / \ / \_ _ _ / _ _ __\ /__________W___/ / \ / \ / V \ / \ / _\| / \ / \--------------------/

13
| U | Det | V | is the volume of the | W | parallelepiped. It is positive if UVW is right handed. It is negative if UVW is left handed.

14
Remark. The equation of a line through (x 1,y 1 ) and (x 2,y 2 ) is | x y 1 | | x 1 y 1 1 | = 0 | x 2 y 2 1 |

15
The equation of a plane through three points (x 1,y 1,z 1 ), (x 2,y 2,z 2 ), (x 3,y 3,z 3 ) is; | x y z 1 | | x 1 y 1 z 1 1 | = 0 | x 2 y 2 z 2 1 | | x 3 y 3 z 3 1 | Notice that this is a linear function of x,y,z. It is of the form Ax+By+Cz+D = 0.

16
Notice that at points (x i,y i,z i ) the determinant is zero. Thus it must be the plane through those three points.

17
Page 274. Find the area of the parallelogram with sides (1,1,1) and (1,2,3). |1 1 1|| 1 1 | Area = Sqrt[ A T A ] = Sqrt[ Det |1 2 3|| 1 2 | ] | 1 3 | = Sqrt [ Det | 3 6 | ] = Sqrt[ 6 ] | 6 14 |

18
Page 277. The determinant represents the stretching factor of a Matrix. This explains why Det(A B) = Det(A) Det(B). This also explains why Det(A -1 ) = 1/Det[ A ].

19
Page 288. Cramer's Rule. A X = B. | a 11... a 1i... a 1n || x 1 | | b 1 | | a 21... a 2i... a 2n || x 2 | | b 2 | | a 31... a 3i... a 3n || x 3 | | b 3 | |...... || | | | | a n1... a ni... a nn || x n | | b n |

20
This means that a 11 x 1 +... + a 1i x i +... + a 1n x n = b 1 a 21 x 1 +... + a 2i x i +... + a 2n x n = b 2 a 31 x 1 +... + a 3i x i +... + a 3n x n = b 3... a n1 x 1 +... + a ni x i +... + a nn x n = b n

21
Now Replace the B column into the original matrix. | a 11... b 1... a 1n | | a 21... b 2... a 2n | | a 31... b 3... a 3n | |...... | | a n1... b n... a nn |

22
|a 11... a 11 x 1 +...+a 1i x i +...+a 1n x n... a 1n | |a 21... a 12 x 1 +...+a 2i x i +...+a 2n x n... a 2n | Det |a 31... a 31 x 1 +...+a 3i x i +...+a 3n x n... a 3n | |...... | |a n1... a n1 x 1 +...+a ni x i +...+a nn x n... a nn | ---------------B-----------

23
Using the rules of determinants, we have | a 11... a 1i x i... a 1n | | a 21... a 2i x i... a 2n | Det | a 31... a 3i x i... a 3n | |...... | | a n1... a ni x i... a nn |

24
x i Det[ A ]. This is Cramer’s rule. x i = Det( A i ) / Det(A) Where A i is A with column i replaced by the RHS = B.

25
Fill out the following table for the cross product. N | S | E | W | U | D ------------|-----|------|-----|------|----- N______|___|___|___|____|___ S______|___|___|___|____|___ E______|___|___|___|____|___ W______|__|___|____|____|___ U______|___|___|___|____|___ D______|___|___|___|____|___

Similar presentations

OK

Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.

Copyright © 2009 Pearson Education, Inc. CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations.

© 2018 SlidePlayer.com Inc.

All rights reserved.

By using this website, you agree with our use of **cookies** to functioning of the site. More info in our Privacy Policy and Google Privacy & Terms.

Ads by Google

Ppt on rajputs of india Ppt on power system engineering Ppt on mentoring and coaching Ppt on biodiesel in india Ppt on red data book of india Ppt on polynomials of 99 Ppt on do's and don'ts of group discussion ideas Ppt on single phase and three phase dual converter travel Ppt on the art of war author Ppt on astronomy and astrophysics courses