Download presentation
Presentation is loading. Please wait.
Published byVivian Astin Modified over 9 years ago
1
1 Programming Languages (CS 550) Mini Language Interpreter Jeremy R. Johnson
2
2 Theme This lecture builds an interpreter for the mini language from Chapter 13 of the book Programming Languages by Ken Louden. First the interpreter is written in scheme and prolog. Then a parser is written that translates the input program into a data structure that can easily be interpreted. The language is extended to support procedures.
3
3 Outline Introduce Mini Language syntax and semantics Environments (Symbol Table) Abstract syntax tree (more yacc and attribute grammars) Mini Language Interpreter Exercise 1: Modify the Mini Language and interpreter to support “repeat … until” statement
4
4 Outline Adding user defined functions to the mini language parameter passing local variables (local environment) function application Execute procedure body in local environment with formal parameters bound to actual argument values return value recursion Exercise 2: Modify the extended Mini Language and interpreter to use an explicit return statement
5
5 Outline Discuss assignment 4 Add lists to the mini language Values are now lists or ints (modify Environment) Support list constants and built-in list processing functions cons( e, L ) - appends element e to the front of list car( L ) - returns the first element in the list cdr( L ) - returns the rest of the list (minus the first element) nullp( L ) - returns 1 if L is null, 0 otherwise intp( e ) - returns 1 if e is an integer, 0 otherwise listp( e ) - returns 1 if e is a list, 0 otherwise to allow construction and access to lists. Provide memory allocator and garbage collection
6
6 Mini Language Syntax 1. → 2. → ; | 3. → | | 4. → := 5. → if then else fi 6. → while do od 7. → + | - | 8. → * | 9. → ( ) | | 10. → | 11. → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 12. → | 13. → a | b | c |... | z
7
7 Operational Semantics The meaning of a program is obtained by interpreting the result of each statement in some model of computation. The meaning of a statement and a program (sequence of statements) is determined by its affect on the environment Implementation in scheme Implementation in prolog Implementation with parser in C++
8
8 Environments Let an Environment be a map from indentifiers to values = integers undefined Mini language programs can be thought of as a map from an initial Environment to a final Environment (assuming it terminates) The initial environment maps all identifiers to an undefined Each statement is defined in terms of what it does to the current environment (another mapping)
9
9 Semantics of Mini Language Statements 1. Env: Identifier → Integer Union {undef} 2. (Env and {I = n})(J) = n if J=I, Env(J) otherwise 3. Env_0 = undef for all I 4. for if-stmt, if expr evaluates to value greater than 0, then evaluate stmt-list after then, else evaluate stmt-list after else 5. for while-stmt, as long as expr evaluates to a value greater than 0, stmt-list is repeatedly executed and expr evaluated.
10
10 Example Mini Language Program 1. n := 0 - 5; 2. if n then i := n else i := 0 - n fi; 3. fact := 1; 4. while i do fact := fact * i; i := i - 1 od What is the final environment?
11
11 Operational Semantics Define language by describing its actions in terms of operations of an actual or hypothetical machine. Need precise description of machine Program Control Store Scheme evaluator Rely on semantics of scheme Parsing not required (program is abstract syntax tree)
12
Scheme Evaluator (define (eval prog) (let (env (initial-environment)) (if (stmtlist? prog) (eval-stmtlist prog env) (error "illegal program"))) (define (eval-stmtlist stmtlist env) (if (null? stmtlist) env (eval-stmtlist (cdr stmtlist) (eval-stmt (car stmtlist) env))))) (define (eval-stmt stmt env) (cond ((assign-stmt? stmt) (eval-assign stmt env)) ((if-stmt? stmt) (eval-if stmt env)) ((while-stmt? stmt) (eval-while stmt env)) ) 12
13
Scheme Evaluator (define (eval-assign stmt env) (let ((var (cadr stmt)) (expr (caddr stmt))) (insert-binding var (eval-expr expr env) env)) (define (eval-if stmt env) (let ((expr (cadr stmt)) (S1 (caddr stmt)) (S2 (cadddr stmt))) (if (eval-expr expr) (eval-stmtlist S1) (eval-stmtlist S2)))) (define (eval-while stmt env) (define (loop expr S env) (if (eval-expr expr) (loop expr S (eval-stmtlist S env)) env)) (let ((expr (cadr stmt)) (S (caddr stmt))) (loop expr S env))) 13
14
14 Operational Semantics Define language by describing its actions in terms of operations of an actual or hypothetical machine. Need precise description of machine Program Control Store Scheme evaluator Reduction machine Reduce program to a semantic “value” Reduction rules (logical inference rules)
15
15 Operational Semantics of Mini Language Expressions (1) ‘0’ 0,…, ‘9’ 9 (2) V’0’ 10*V,…,V’9’ 10*V+9 (3) V 1 ‘+’ V 2 V 1 + V 2 (4) V 1 ‘+’ V 2 V 1 + V 2 (5) V 1 ‘*’ V 2 V 1 * V 2
16
16 Mini Language Expressions (7) E E 1 _____________________________________________________________________ E ‘+’ E 2 E 1 ‘+’ E 2 (8) E E 1 _____________________________________________________________________ E ‘-’ E 2 E 1 ‘-’ E 2 (9) E E 1 _____________________________________________________________________ E ‘*’ E 2 E 1 ‘*’ E 2
17
17 Mini Language Expressions (10) E E 1 _____________________________________________________________________ V ‘+’ E V ‘+’ E 1 (11) E E 1 ____________________________________________________________________ V ‘-’ E V ‘-’ E 1 (12) E E 1 ____________________________________________________________________ V ‘*’ E V ‘*’ E 1 (14) E E 1, E 1 E 2 [transitive closure] _____________________________________________________________________ E E 2
18
18 Implementation in Prolog % reduce_all(times(plus(2,3),minus(5,1)),V). % V = 20 ? reduce(plus(E,E2),plus(E1,E2)) :- reduce(E,E1). reduce(minus(E,E2),minus(E1,E2)) :- reduce(E,E1). reduce(times(E,E2),times(E1,E2)) :- reduce(E,E1). reduce(plus(V,E),plus(V,E1)) :- reduce(E,E1). reduce(minus(V,E),minus(V,E1)) :- reduce(E,E1). reduce(times(V,E),times(V,E1)) :- reduce(E,E1). reduce(plus(V1,V2),R) :- integer(V1), integer(V2), !, R is V1+V2. reduce(minus(V1,V2),R) :- integer(V1), integer(V2), !, R is V1-V2. reduce(times(V1,V2),R) :- integer(V1), integer(V2), !, R is V1*V2. reduce_all(V,V) :- integer(V), !. reduce_all(E,E2) :- reduce(E,E1), reduce_all(E1,E2).
19
19 Environments and Assignment (7) ______________________________________________________________________________________________________________________________ (15) Env(I) = V ____________________________________________________________________________
20
20 Environments and Assignment (16) Env & {I = V} (17) ______________________________________________________________________________________________________________________ (18) Env 1 ______________________________________________________________________________________________ (19) L
21
21 Implementation in Prolog Configurations Config(E,Env) Environments [value(I 1,v 1 ),...,value(I n,v n )] Predicate to lookup values Lookup(Env,I,V)
22
22 Implementation in Prolog Configurations Config(E,Env) Environments [value(I 1,v 1 ),...,value(I n,v n )] Predicate to lookup values Lookup(Env,I,V) lookup([value(I,V)|_],I,V). lookup([_|Es],I,V) :- lookup(Es,I,V), !.
23
23 Implementation in Prolog % reduce_value(config(times(plus(x,3),minus(5,y)),[value(x,2),value(y,1)]),V). % V = config(20,[value(x,2),value(y,1)]) ? reduce(config(plus(E,E2),Env),config(plus(E1,E2),Env)) :- reduce(config(E,Env),config(E1,Env)). reduce(config(I,Env),config(V,Env)) :- atom(I), lookup(Env,I,V). reduce_all(config(V,Env),config(V,Env)) :- integer(V), !. reduce_all(config(E,Env),config(E2,Env)) :- reduce(config(E,Env),config(E1,Env)), reduce_all(config(E1,Env),config(E2,Env)). reduce_value(config(E,Env),V) :- reduce_all(config(E,Env),config(V,Env)).
24
24 If Statements (20) __________________________________________________________________________________________________________________________________ (21) V > 0 ______________________________________________________________________________________________________________________________ (22) V 0 _____________________________________________________________________
25
25 While Statements (23) , V 0 ________________________________________________________________________________________________________________ Env (24) , V > 0 _____________________________________________________________________________________________________________
26
26 Implementation in Prolog % Test cases: % reduce_exp_all(config(plus(times(2,5),minus(2,5)),[]),V). % V = config(7,[]) % reduce_exp_all(config(plus(times(x,5),minus(2,y)),[value(x,2),value(y,5)]),V). % V = config(7,[value(x,2),value(y,5)]) % reduce_all(config(seq(assign(x,3),assign(y,4)),[]),Env). % Env = [value(x,3),value(y,4)] % reduce(config(if(3,assign(x,3),assign(x,4)),[]),Env). % Env = [value(x,3)] % reduce(config(if(0,assign(x,3),assign(x,4)),[]),Env). % Env = [value(x,4)] % reduce_all(config(if(n,assign(i,0),assign(i,1)),[value(n,3)]),Env). % Env = [value(n,3),value(i,0)]
27
27 Implementation in Prolog % reduce_all(config(while(x,assign(x,minus(x,1))),[value(x,3)]),Env). % Env = [value(x,0)] % reduce_all(config( % seq(assign(n,minus(0,3)), % seq(if(n,assign(i,n),assign(i,minus(0,n))), % seq(assign(fact,1), % while(i,seq(assign(fact,times(fact,i)),assign(i,minus(i,1))))))) %,[]),Env). % Env = [value(n,-3),value(i,0),value(fact,6)]
28
28 Implementing the Interpreter Parser (create abstract syntax tree) Syntax directed semantics The interpreter is implemented by creating a class, with an evaluate method, for each syntactic category. Use inheritance to derive specialized statements from more general categories of statements. When the parser detects a syntactic category the corresponding constructor is called. A map is used to store the environment and the program is executed by calling all of the evaluate methods of the statements in the program.
29
29 Adding Functions In this implementation we will insist that all functions are closed. I.E. they only communicate with the calling environment through parameter passing and their meaning is determined soley from the statements in their definition and the parameter values. parameter passing local variables (local environment) separate function table function application Execute procedure body in local environment with formal parameters bound to actual argument values return value recursion
30
30 Example Mini Language Procedure define add proc(n) i := n; s := 0; while i do s := s + i; i := i-1 od; return := s end; n := 5; s := add(n) What is the final environment?
31
31 Example Recursive Mini Language Procedure define addr proc(n) if n then return := n + addr(n-1) else return := 0 fi end; n := 5; s := addr(n) What is the final environment?
32
32 What Next? Parsing and parser generators Dynamic memory management and garbage collection Assignment: modify mini language and interpreter to handle dynamic memory management and garbage collection Functional programming Functions as first class objects Introduce proc() … end as a value Assignment: modify mini language and interpreter to support this functional programming
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.