Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solid state physics N. Witkowski.

Similar presentations


Presentation on theme: "Solid state physics N. Witkowski."— Presentation transcript:

1 Solid state physics N. Witkowski

2 Introduction Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson 40h Lessons with N. Witkowski house 4, level 0, office 60111, 6 laboratory courses (6x3h): 1 extended report + 4 limited reports Semiconductor physics Specific heat Superconductivity Magnetic susceptibility X-ray diffraction Band structure calculation Evaluation : written examination 13 march (to be confirmed) 5 hours, 6 problems document authorized « Physics handbook for science and engineering» Carl Nordling, Jonny Osterman Calculator authorized Second chance in june Given between 23rd feb-6th march Registration : from 9th feb on board F and Q House 4 ground level Info comes later Home work

3 What is solid state ? Single crystals Polycristalline crystals
Long range order and 3D translational periodicity Single crystals graphite 1.2 mm 4 nmx4nm Polycristalline crystals Single crystals assembly diamond Quasicrystals Long range order no no 3D translational periodicity Al72Ni20Co8 Amorphous materials Disordered or random atomic structure silicon

4 Subject of study Phenomena Material Variables Crystalline structure
Atomic vibration, thermal properties Electronic structure, electrical – optical properties Superconductivity Magnetism Variables Temperature (mK – 3000 K) Energy (provided by provided by photons, neutrons, electrons or ions, meV- keV) Pressure (10-10 to 1010 Pa) Magnetic field (-50 T) Electric field ( - 1 GV/m) Material metals semiconductors insulators

5 Motivations Wide range of technological applications
Materials science (applications of mechanical, electrical, optical, magnetic…properties of solids) Semiconductor technology and micro-electronics Microstructure engineering, nano-technology Inorganic chemistry Biological materials, biomimetics Pharmaceutical materials science Medical technology

6 Outline Corresponding chapter in Kittel book [1] Crystal structure 1
[2] Reciprocal lattice 2 [3] Diffraction [4] Crystal binding no lecture 3 [5] Lattice vibrations 4 [6] Thermal properties 5 [7] Free electron model 6 [8] Energy band 7,9 [9] Electron movement in crystals 8 Metals and Fermi surfaces 9 [10] Semiconductors 8 [11] Superconductivity [12] Magnetism

7 Chap.1 Crystal structure

8 Introduction Aim : A : defining concepts and definitions
B : describing the lattice types C : giving a description of crystal structures

9 A. Concepts, definitions
A1. Definitions Crystal : 3 dimensional periodic arrangments of atomes in space. Description using a mathematical abstraction : the lattice Lattice : infinite periodic array of points in space, invariant under translation symmetry. Basis : atoms or group of atoms attached to every lattice point Crystal = basis+lattice

10 A. Concepts, definitions
Translation vector : arrangement of atoms looks the same from r or r’ point r’=r+u1a1+u2a2+u3a3 : u1, u2 and u3 integers = lattice constant a1, a2, a3 primitive translation vectors T=u1a1+u2a2+u3a3 translation vector r = a1+2a2 r’= 2a1- a2 T=r’-r=a1-3a2

11 A. Concepts, definitions
A2.Primitive cell Standard model volume associated with one lattice point Parallelepiped with lattice points in the corner Each lattice point shared among 8 cells Number of lattice point/cell=8x1/8=1 Vc= |a1.(a2xa3)|

12 A. Concepts, definitions
Wigner-Seitz cell planes bisecting the lines drawn from a lattice point to its neighbors

13 A. Concepts, definitions
A3.Crystallographic unit cell larger cell used to display the symmetries of the cristal Not primitive

14 B. Lattice types B1. Symmetries : Translations
Rotation : 1,2,3,4 and 6 (no 5 or 7) Mirror reflection : reflection about a plane through a lattice point Inversion operation (r -> -r) three 4-fold axes of a cube four 3-fold axes of a cube six 2-fold axes of a cube planes of symmetry parallel in a cube

15 B. Lattice types B2. Bravais lattices in 2D 5 types general case :
oblique lattice |a1|≠|a2| , (a1,a2)=φ special cases : square lattice: |a1|=|a2| , φ= 90° hexagonal lattice: |a1|=|a2| , φ= 120° rectangular lattice: |a1|≠|a2| , φ= 90° centered rectangular lattice: |a1|≠|a2| , φ= 90°

16 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

17 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Base centered monoclinic

18 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Base centered orthorhombic Body centered orthorhombic Face centered orthorhombic

19 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Body centered tetragonal

20 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Simple cubic sc Body centered cubic bcc Face centered cubic fcc

21 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

22 B. Lattice types B3. Bravais lattices in 3D : 14 system
Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

23 B. Lattice types B4. Examples : bcc Bcc cell : a, 90°, 2 atoms/cell
Primitive cell : ai vectors from the origin to lattice point at body centers Rhombohedron : a1= ½ a(x+y-z), a2= ½ a(-x+y+z), a3= ½ a(x-y+z), edge ½ a Wigner-Seitz cell z a3 a2 y x a1

24 B. Lattice types B5. Examples : fcc fcc cell : a, 90°, 4 atoms/cell
Primitive cell : ai vectors from the origin to lattice point at face centers Rhombohedron : a1= ½ a(x+y), a2= ½ a(y+z), a3= ½ a(x+z), edge ½ a Wigner-Seitz cell z x y

25 B. Lattice types B6. Examples : fcc - hcp
different way of stacking the close-packed planes Spheres touching each other about 74% of the space occupied B7. Example : diamond structure fcc structure 4 atoms in tetraedric position Diamond, silicon fcc : 3 planes A B C hcp : 2 planes A B

26 C. Crystal structures C1. Miller index
lattice described by set of parallel planes usefull for cristallographic interpretation In 2D, 3 sets of planes Miller index Interception between plane and lattice axis a, b, c Reducing 1/a,1/b,1/c to obtain the smallest intergers labelled h,k,l (h,k,l) index of the plan, {h,k,l} serie of planes, [u,v,w] or <u,v,w> direction

27 C. Crystal structures C2. Miller index : example
plane intercepts axis : 3a1 , 2a2, 2a3 inverses : 1/3 , 1/2 , 1/2 integers : 2, 3, 3 h=2 , k=3 , l=3 Index of planes : (2,3,3)


Download ppt "Solid state physics N. Witkowski."

Similar presentations


Ads by Google