Download presentation

Presentation is loading. Please wait.

Published byLuis Rhodes Modified over 4 years ago

1
2.9 Derivative as a Function

2
From yesterday: the definition of a derivative: The derivative of a function f at a number a, denoted by is: if this limit exists Another useful form of the derivative occurs if we write x = a + h, then h = x – a, and h approaches zero as x approaches a

3
A function f is differentiable at a if f(a) exists. It is differentiable on an open interval (a,b) IF it is differentiable at EVERY NUMBER in the interval. Theorem: If f is differentiable at a, then f is continuous at a. The converse of this theorem is false. There are many functions that are continuous but not differentiable.

4
If, find a formula for & graph it on the next page

6
If find the derivative of f. State the domain of f

7
Given, graph its derivative:

8
Other notations for the derivative: A function f is differentiable at a if fa exists. It is differentiable on an open interval or IF it is differentiable at EVERY number in the interval.

9
When is differentiable????

10
If f is differentiable at a, then f is continuous at a. Why???

13
Read p. 165 – 173 Work p. 173 # 1, 5, 14, 21, 22, 23, 33, 37, 44

Similar presentations

OK

Increasing/Decreasing Functions and Concavity Objective: Use the derivative to find where a graph is increasing/decreasing and determine concavity.

Increasing/Decreasing Functions and Concavity Objective: Use the derivative to find where a graph is increasing/decreasing and determine concavity.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google