Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 11 Modern Computer Systems, Clusters, and Networks

Similar presentations


Presentation on theme: "Chapter 11 Modern Computer Systems, Clusters, and Networks"— Presentation transcript:

1 Chapter 11 Modern Computer Systems, Clusters, and Networks
The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3rd Edition, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda Senne, Bentley College

2 Basic Personal Computer System
Chapter 11: Modern Computer Systems, Clusters, and Networks

3 Mainframe Computer System
Chapter 11: Modern Computer Systems, Clusters, and Networks

4 Major PC System Components
Chapter 11: Modern Computer Systems, Clusters, and Networks

5 System Performance Improvements
Multiple CPUs Faster clock speed, buses and circuits Wider instruction and data paths Faster disk access More and faster memory Chapter 11: Modern Computer Systems, Clusters, and Networks

6 Multiprocessing Reasons Types of multiprocessor systems
Increase the processing power of a system Parallel processing Types of multiprocessor systems Tightly coupled systems Loosely coupled systems Chapter 11: Modern Computer Systems, Clusters, and Networks

7 Tightly Coupled Systems
Also called multiprocessor systems Identical access to programs, data, shared memory, I/O, etc. Easily extends multi-tasking, and redundant program execution Two ways to configure Master-slave multiprocessing Symmetrical multiprocessing (SMP) Chapter 11: Modern Computer Systems, Clusters, and Networks

8 Tightly Coupled Systems
Chapter 11: Modern Computer Systems, Clusters, and Networks

9 Master-Slave Multiprocessing
Master CPU Manages the system Controls all resources and scheduling Assigns tasks to slave CPUs Advantages Simplicity Protection of system and data Disadvantages Master CPU becomes a bottleneck Reliability issues – if master CPU fails entire system fails Chapter 11: Modern Computer Systems, Clusters, and Networks

10 Symmetrical Multiprocessing
Each CPU has equal access to resources Each CPU determines what to run using a standard algorithm Disadvantages Resource conflicts – memory, i/o, etc. Complex implementation Advantages High reliability Fault tolerant support is straightforward Balanced workload Chapter 11: Modern Computer Systems, Clusters, and Networks

11 Loosely Coupled Systems
Clusters or multi-computer systems Each system has its own CPU, memory, and I/O facilities Each system is known as a node of the cluster Advantages Fault-tolerant, scalable, well balanced, distance is not an issue Two ways to configure Shared-nothing model Shared-disk model Chapter 11: Modern Computer Systems, Clusters, and Networks

12 Shared-Nothing Model High speed link between nodes
No sharing of resources Partitioning of work through division of data Advantage Reduced communication between nodes Disadvantage Can result in inefficient division of work Chapter 11: Modern Computer Systems, Clusters, and Networks

13 Shared-Disk Model High speed link between nodes
Disk drives are shared between nodes Advantage Better load balancing Disadvantage Complex software required for transactional processing (lock, commit phases) Chapter 11: Modern Computer Systems, Clusters, and Networks

14 Cluster Models Chapter 11: Modern Computer Systems, Clusters, and Networks

15 Beowulf Clusters Simple and highly configurable Low cost Networked
Computers connected to one another by a private Ethernet network Connection to an external network is through a single gateway computer Configuration COTS – Commodity-off-the-shelf components such as inexpensive computers Blade components – computers mounted on a motherboard that are plugged into connectors on a rack Either shared-disk or shared-nothing model Chapter 11: Modern Computer Systems, Clusters, and Networks

16 Blade and Rack of Beowulf Cluster
Figure 11.9 Chapter 11: Modern Computer Systems, Clusters, and Networks

17 Computer Interconnection
Communication channel – pathway for data movement between computers Point-to-Point connectivity Communication channel that passes data directly between two computers Serial connection Telephone modem Terminal controller – handles multiple point-to-point connections for a host computer Multipoint connectivity Multidrop channel or shared communication channel Chapter 11: Modern Computer Systems, Clusters, and Networks

18 Example: Point-to-Point
Chapter 11: Modern Computer Systems, Clusters, and Networks

19 Client-Server Architecture
Computer servers provides services File storage, databases, printing services, login services, web services Client computers Execute programs in its own memory Access files either locally or can request files from a server Chapter 11: Modern Computer Systems, Clusters, and Networks

20 Client-Server Network
Chapter 11: Modern Computer Systems, Clusters, and Networks

21 LAN Topology Arrangement of workstations in a shared medium environment Logical arrangement (data flow) Physical arrangement (cabling scheme) Chapter 11: Modern Computer Systems, Clusters, and Networks

22 LAN Topologies: Bus Multipoint medium
Stations attach to linear medium (bus) using tap Transmission from any stations travels entire medium (both directions) Termination required at ends of bus to prevent the signal from bouncing Break in cable brings down entire bus Chapter 11: Modern Computer Systems, Clusters, and Networks

23 Bus LAN Diagram Chapter 11: Modern Computer Systems, Clusters, and Networks

24 LAN Topologies: Tree Generalization of bus topology
Branching cable with no closed loops Cable(s) begin at headend, travel to branches which may have branches of their own Each transmission propagates through network, can be received by any station Chapter 11: Modern Computer Systems, Clusters, and Networks

25 LAN Topologies: Ring Repeaters are joined by unidirectional point-to-point links in a ring As data circulates past a receiver, the receiver checks its address, and copies those intended for it into a local buffer Data circulates until it returns to source, which removes it from network Better performance at high levels of usage Chapter 11: Modern Computer Systems, Clusters, and Networks

26 Ring LAN Diagram Chapter 11: Modern Computer Systems, Clusters, and Networks

27 LAN Topologies: Star Each station connected point-to-point to a central station, usually with two undirectional links Switching in the central station connects pairs of nodes together Central node can broadcast info, or can switch frames among stations Failure of central station causes entire network to go down Chapter 11: Modern Computer Systems, Clusters, and Networks

28 Star LAN Diagram Chapter 11: Modern Computer Systems, Clusters, and Networks

29 Ethernet MAC Protocol MAC – Medium Access Control Ethernet and CSMA/CD
Carrier sense multiple access with collision detection Four step procedure If medium is idle, transmit If medium is busy, listen until idle and then transmit If collision is detected, cease transmitting After a collision, wait a random amount of time before retransmitting Chapter 11: Modern Computer Systems, Clusters, and Networks

30 Ethernet Frame Chapter 11: Modern Computer Systems, Clusters, and Networks

31 Switched Ethernet Chapter 11: Modern Computer Systems, Clusters, and Networks

32 Token Ring MAC Protocol
Token “seized” by changing a bit on the circulating frame to indicate start of frame rather than token Default configuration requires sender to complete transmission and begin receiving transmitted frame before releasing the token “Early token release” allows release of token after transmission but before receipt of frame Chapter 11: Modern Computer Systems, Clusters, and Networks

33 Hubs The active central element of the star layout.
When a single station transmits, the hub repeats the signal on the outgoing line to each station. Hubs can be cascaded in a hierarchical configuration Ethernet hubs are physically a star but logically a bus. Chapter 11: Modern Computer Systems, Clusters, and Networks

34 Bridges Allow connections between LANs and to WANs
Used between similar networks Read all frames from each network Accept frames from sender on one network that are addressed to a receiver on the other network Retransmit frames from sender using MAC protocol for receiver Chapter 11: Modern Computer Systems, Clusters, and Networks

35 Routers Similar to bridges but connect dissimilar networks
Convert format of the message to correspond to the protocol of the other network Network traffic is specifically addressed to the router Chapter 11: Modern Computer Systems, Clusters, and Networks

36 Wide Area Network Circuit switching Message switching Packet switching
Dedicated channel between source and destination for duration of connection Message switching Dedicated channel for an entire message Packet switching An independent path is created for each datagram Virtual circuit switching A route is created from source to destination before transmission begins and all datagrams are sent using the same route Chapter 11: Modern Computer Systems, Clusters, and Networks

37 Networks vs. Clusters Externally, clusters appear as a single computing unit. Network nodes are individually identifiable. Workload on a cluster is determined by cluster administration and load-balancing software. Network workload cannot be controlled using the above method. Chapter 11: Modern Computer Systems, Clusters, and Networks

38 High Performance Computing
Massively parallel processor architectures (MPP) Clusters of power machines or larger Beowulf blade clusters Well suited for problems that can be broken into subtasks Grid computing Supercomputer performance through distributing CPU processing to the spare CPU cycles of personal computers connected to a network Chapter 11: Modern Computer Systems, Clusters, and Networks

39 Parallel Computers Massively parallel architectures
Hundreds to millions of CPUs CPUs have small amounts of local memory All CPUs have access to global shared memory Pipelined CPUs Results from one CPU flow to the next CPU for additional processing Chapter 11: Modern Computer Systems, Clusters, and Networks

40 Copyright 2003 John Wiley & Sons
All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the permissions Department, John Wiley & Songs, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information contained herein.” Chapter 11: Modern Computer Systems, Clusters, and Networks


Download ppt "Chapter 11 Modern Computer Systems, Clusters, and Networks"

Similar presentations


Ads by Google