Download presentation

1
Section 7.7 Complex Numbers

2
**Objectives Basic Concepts Addition, Subtraction, and Multiplication**

Powers of i Complex Conjugates and Division

3
**PROPERTIES OF THE IMAGINARY UNIT i**

THE EXPRESSION

5
Example Write each square root using the imaginary i. a. b. c. Solution a. b. c.

6
**SUM OR DIFFERENCE OF COMPLEX NUMBERS**

Let a + bi and c + di be two complex numbers. Then (a + bi) + (c+ di) = (a + c) + (b + d)i Sum and (a + bi) − (c+ di) = (a − c) + (b − d)i. Difference

7
Example Write each sum or difference in standard form. a. (−8 + 2i) + (5 + 6i) b. 9i – (3 – 2i) Solution a. (−8 + 2i) + (5 + 6i) = (−8 + 5) + (2 + 6)I = −3 + 8i b. 9i – (3 – 2i) = 9i – 3 + 2i = – 3 + (9 + 2)I = – i

8
Example Write each product in standard form. a. (6 − 3i)(2 + 2i) b. (6 + 7i)(6 – 7i) Solution a. (6 − 3i)(2 + 2i) = (6)(2) + (6)(2i) – (2)(3i) – (3i)(2i) = i – 6i – 6i2 = i – 6i – 6(−1) = i

9
Example (cont) Write each product in standard form. a. (6 − 3i)(2 + 2i) b. (6 + 7i)(6 – 7i) Solution b. (6 + 7i)(6 – 7i) = (6)(6) − (6)(7i) + (6)(7i) − (7i)(7i) = 36 − 42i + 42i − 49i2 = 36 − 49i2 = 36 − 49(−1) = 85

10
POWERS OF i The value of in can be found by dividing n (a positive integer) by 4. If the remainder is r, then in = ir. Note that i0 = 1, i1 = i, i2 = −1, and i3 = −i.

11
Example Evaluate each expression. a. i25 b. i7 c. i44 Solution a. When 25 is divided by 4, the result is 6 with the remainder of 1. Thus i25 = i1 = i. b. When 7 is divided by 4, the result is 1 with the remainder of 3. Thus i7 = i3 = −i. c. When 44 is divided by 4, the result is 11 with the remainder of 0. Thus i44 = i0 = 1.

12
Example Write each quotient in standard form. a. b. Solution a.

13
Example (cont) b.

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google