Download presentation

Presentation is loading. Please wait.

Published byDevin Scott Modified over 4 years ago

1
SOME APLICATIONS OF DIFFERENTIATION AND INTEGRATION Fakhrulrozi Hussain. http://fakhrulrozi.com/

2
SOME APPLICATIONS OF INTEGRATIONS 1.Area Under a Curve 2.Volume by Slicing 3.Geometric Interpretation

3
SOME APPLICATIONS OF INTEGRATIONS 1.Area Under a Curve

4
1.Area Under a Curve - example SOME APPLICATIONS OF INTEGRATIONS

5
Find the volume of the cylinder using the formula and slicing with respect to the x-axis. A = r 2 A = 2 2 = 4 2.Volume by Slicing-example SOME APPLICATIONS OF INTEGRATIONS

6
Area of R 1 – Area of R 2 + Area of R 3 a b R1R1 R2R2 R3R3 3.Geometric Interpretation

7
SOME APPLICATIONS OF DIFFERENTATIONS 1.Tangents and Normals 2.Newton's Method for Solving Equations Corollary. 3.Motion 4.Related Rates

8
APPLICATIONS OF DIFFERENTATIONS 1.Tangents and Normals we can find the slope of a tangent at any point (x, y) using

9
APPLICATIONS OF DIFFERENTATIONS 1.Tangents and Normals - example Find the gradient of (i) the tangent (ii) the normal to the curve y = x 3 - 2x 2 + 5 at the point (2,5) Ans : The slope of the tangent is The slope of the normal is found using m 1 × m 2 = -1

10
APPLICATIONS OF DIFFERENTATIONS 2.Newton's Method for Solving Equations

11
APPLICATIONS OF DIFFERENTATIONS 2.Newton's Method for Solving Equations – example Find the root of 2x 2 x 2 = 0 between 1 and 2. Ans: Try x 1 = 1.5 Then Now f(1.5) = 2(1.5) 2 1.5 2 = 1 f '(x) = 4x 1 and f '(1.5) = 6 1 = 5 So So 1.3 is a better approximation.

12
APPLICATIONS OF DIFFERENTATIONS 2.Newton's Method for Solving Equations – example Continuing the process, (better accuracy) Continue for as many steps as necessary to give the required accuracy. Using computer application. The result is: root(2x 2 x 2, x) = 1.2807764064044

13
APPLICATIONS OF DIFFERENTATIONS 3.Motion

14
APPLICATIONS OF DIFFERENTATIONS 4.Related Rates If 2 variables both vary with respect to time and have a relation between them, we can express the rate of change of one in terms of the other. We need to differentiate both sides with respect to time ( ).

15
APPLICATIONS OF DIFFERENTATIONS 4.Related Rates - example A 20 m ladder leans against a wall. The top slides down at a rate of 4 ms -1. How fast is the bottom of the ladder moving when it is 16 m from the wall?

16
APPLICATIONS OF DIFFERENTATIONS 4.Related Rates - example A 20 m ladder leans against a wall. The top slides down at a rate of 4 ms -1. How fast is the bottom of the ladder moving when it is 16 m from the wall? Ans: Now the relation between x and y is: x 2 + y 2 = 20 2 Now, differentiating throughout w.r.t time: That is:

17
APPLICATIONS OF DIFFERENTATIONS 4.Related Rates - example A 20 m ladder leans against a wall. The top slides down at a rate of 4 ms -1. How fast is the bottom of the ladder moving when it is 16 m from the wall? Ans: Now, we know and we need to know the horizontal velocity (dx/dt) when x = 16.

18
APPLICATIONS OF DIFFERENTATIONS 4.Related Rates - example A 20 m ladder leans against a wall. The top slides down at a rate of 4 ms -1. How fast is the bottom of the ladder moving when it is 16 m from the wall? Ans: The only other unknown is y, which we obtain using Pythagoras' Theorem: So Gives m/s

19
MORE APPLICATIONS OF DIFFERENTATIONS AND INTEGRATIONS Area Under a Curve Area in Polar Coordinates Center of Mass Center of Mass of a Curve Center of Mass of an Area Surface of Revolution Volume of Revolution Volume by Slicing The Stirling's Formula for the Factorial and the Gamma Function

20
MORE APPLICATIONS OF DIFFERENTATIONS AND INTEGRATIONS Convergence of the Binomial Expansion on [-1, 1] Taylors Expansion with an Integral form of Remainder. Corollary. Theorem (Polygonal Approximation). Theorem (Representationof Polygons). Weierstrass Approximation Theorem Space Curves The Unit Tangent and the Principal Normal Velocity and Acceleration

Similar presentations

OK

Chapter 9: Vector Differential Calculus 1 9.1. Vector Functions of One Variable -- a vector, each component of which is a function of the same variable.

Chapter 9: Vector Differential Calculus 1 9.1. Vector Functions of One Variable -- a vector, each component of which is a function of the same variable.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on bond length definition Ppt on interest rate risk management Converter pub to ppt online templates Ppt on eia report pdf Ppt on contact management system in java Ppt on object oriented database management system Ppt on vodafone company profile Ppt on polynomials download movies Ppt on artificial intelligence in medicine Ppt on file security system