Presentation is loading. Please wait.

Presentation is loading. Please wait.

Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of Neoclassical Tearing Modes E. Westerhof FOM-Instituut.

Similar presentations


Presentation on theme: "Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of Neoclassical Tearing Modes E. Westerhof FOM-Instituut."— Presentation transcript:

1 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of Neoclassical Tearing Modes E. Westerhof FOM-Instituut voor Plasmafysica “Rijnhuizen” acknowledgement: colleagues from EFDA-JET Task force M: O. Sauter et al. colleagues from Trilateral Euregio Cluster: R. Koslowski et al.

2 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ CONTENTS Introduction –experimental beta limits –Rutherford equation for magnetic island evolution Control of Neoclassical Tearing Modes –ways to influence island growth –experimental realisations: COMPASS-D, ASDEX-U –ways to influence ‘seeding’ of NTM –sawtooth and NTM control on JET Outlook –open issues and opportunities

3 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’  -limit in TEXTOR RI-mode sudden confinement reduction mode grows to saturation in 10-20 ms identified as 3/2 tearing  ’ < 0 stable till 20 ms after mode onset triggered by sawtooth Koslowski et al., NF 40 821 (2000)

4 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ NTM limiting performance in JET cascade of NTM as NBI power is ramped and  N increased 3/2: confinement deterioration 2/1: can cause disruptions experiments at low field as JET is “under powered” Buttery et al., 26th EPS 1999

5 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Projection to ITER almost linear scaling of  N at 3/2 mode onset with poloidal ion Larmor radius  * results from different devices corrected for collisionality variation but, underlying physics not fully understood Buttery et al., PPCF 42 B61 (2000)

6 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Rutherford equation in nonlinear regime inertia is negligible flux surface average of Ohm’s law (  1 pert. of helical flux)  =  current perturbation j 1 =  ’(w)  1 / w (constant  1 approx.) stability parameter  ’(w) = jump in  1 derivative across magnetic island width w w = 4 (  1 /  0 ’’) 1/2 Rutherford equation:  t w = 1.22  (  ’(w)  c 1 j ni1  c 2  1 j 0 )

7 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Instability drive from bootstrap current perturbation bootstrap current j bs   1/2  p ’ profile is flattened across island by parallel transport j ni1 =  j bs in island, this drives mode growth  t w  j bs w / (w 2 + w c 2 ) with incomplete flattening w c  (   /  || ) 1/4 Sauter et al., PoP 4 1654 (1997)

8 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Generelized Rutherford equation including neoclassical effects sign of ion-polarisation term depends on mode rotation and is highly disputed phase diagram with  ’ < 0 a critical seed island is required for mode growth Hegna, PoP 5 1767 (1998)

9 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of neoclassical TMs, I current profile control in order to increase  ’ all previous work on classical TM applies for example, by driven current j CD  exp(  2 (r  r CD ) 2 ) contribution to  ’  ’ CD = I CD    (q 2 /r s 2 q’) F(  (r CD -r s )) Westerhof, NF 30 1144 (1990)

10 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Lower Hybrid Current Drive COMPASS-D 2/1 neoclassical tearing mode during high power ECRH (1MW) stabilised by 90kW off-axis LHCD increase of  after stabilisation change to  ’ estimated to be sufficient for NTM stabilisation Warrick et al., PRL 85 574 (2000)

11 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of neoclassical TMs, II co-current drive inside island to substitute missing j bs phased current drive term in Rutherford equation constant a J depends on local shear, phasing, and J CD (r) profile J 0 = I p (r s ) /  r s 2 CW current drive appears to be similarly effective –J 1 is created by transport within flux-surfaces Morris et al., 19th EPS and ICPP (1992) Yu et al., PoP 7 312 (2000)

12 Electron Cyclotron Current Drive ASDEX-Upgrade Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ 3/2 neoclassical tearing mode during high power NBI (10 MW) stabilised by 1 MW off-axis co-ECCD (continuous) Gantenbein et al., PRL 85 1242 (2000)

13 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Electron Cyclotron Current Drive ASDEX-Upgrade, modelling MHD modelling of ECCD stabilisation very sensitive to co-CD location with counter-ECCD no effect also heating acts to stabilise heating and co-CD about equally effective ctr-CD and heating balance Gantenbein et al., PRL 85 1242 (2000)

14 Control of neoclassical TMs, III Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ finite w seed needed for growth: control seeding of mode –seeding is a rather neglected topic in NTM literature seeding of 3/2 NTM mostly from sawtooth precursor –toroidal coupling of 2/2 component to the 3/2 mode thus: sawtooth control = NTM seed island control –sawtooth stabilisation  risk of “monster sawtooth”  BAD –destabilisation  small period, small amplitude  small seed –recent experiments on JET by Task force M

15 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ 2.5 T, at such fields NTM never triggered with NBI-only NTM triggered by large sawtooth with 800 ms period low threshold:  N = 1.1 NN SXR P NBI, P ICRH n=1, n=2 NTM Monster sawtooth triggered NTM JET, with central ICRH

16 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ example: IC resonance on low field side RF phasing -90 o for current drive B-field ramped down from 1.65 to 1.40 T clear effect on period as resonance crosses sawtooth inversion ICCD sawtooth (de)stabilisation JET, 42 MHz 2  cH H-minority

17 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ comparison of JET discharges 51994 with ICCD for sawtooth destabilisation and 51995 NBI power ramp to locate threshold  N 1.20 T, 1.20 MA further analysis ongoing Higher threshold  N for NTM with ICCD sawtooth destabilisation

18 Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Outlook open issues: –natural mode rotation and ion-polarisation current –causes and processes of seed island generation –experimental scaling of NTM  -limit, extrapolation to reactor –… opportunities: –TEXTOR in same collisionality regime as ITER-FEAT –1MW, 140 GHz ECCD system opens ways to affect NTM –DED is an experiment on seed island generation –ECRH on JET-EP well suited for NTM and sawteeth studies –we have expertise, experimental tools, and codes to contribute to fundamental questions raised by NTM physics


Download ppt "Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of Neoclassical Tearing Modes E. Westerhof FOM-Instituut."

Similar presentations


Ads by Google