Presentation is loading. Please wait.

Presentation is loading. Please wait.

ODOR AND CORROSION CONTROL IN SEWERAGE SYSTEMS Enrique J. La Motta, Ph.D., P.E. Professor of Civil and Environmental Engineering THE SOUTHEAST SYMPOSIUM.

Similar presentations


Presentation on theme: "ODOR AND CORROSION CONTROL IN SEWERAGE SYSTEMS Enrique J. La Motta, Ph.D., P.E. Professor of Civil and Environmental Engineering THE SOUTHEAST SYMPOSIUM."— Presentation transcript:

1 ODOR AND CORROSION CONTROL IN SEWERAGE SYSTEMS Enrique J. La Motta, Ph.D., P.E. Professor of Civil and Environmental Engineering THE SOUTHEAST SYMPOSIUM ON CONTEMPORARY ENGINEERING TOPICS (SSCET) University of New Orleans September 2014

2 PRESENTATION OUTLINE 1.Cause of H 2 S odor and corrosion 2.Odor and corrosion control technology overview 3.Problems and solution in NO metropolitan area 4.Pure oxygen injection 5.Applications and case studies

3 Bacteria need oxygen to consume org. matter MAIN CAUSE OF ODOR Oxygen sources (order of preference): 1.Oxygen (limited) 2.Nitrate (limited) 3.Sulfate (unlimited)

4 Anaerobic slime layer SO 4 2- Anaerobic bacteria H2SH2S Sulfide Generation in Sewers Condensate: Location of H 2 S oxidizing bacteria Anaerobic slime layer H 2 S is released from solution as gas (rotten egg odor) Corrosion of moist pipe surface H 2 S + O 2 Thiobacillus sulfuricans H 2 SO 4 (EPA Manual)

5 EFFECTS OF SEWER CORROSION (Vitrified Clay Pipe Manual)

6 RATE OF CORROSION At H 2 S concentrations of 20ppm in the headspace, concrete will corrode at a rate of 1 inch in 5 years (Clidence and Shissler, 2008)

7 MAJOR H 2 S CORROSION TARGET AREAS Gravity concrete or cast iron sewers Pump stations and force mains Treatment facilities

8 TREATMENT OBJECTIVES Maintain DO > 0.5 mg/L. Keep dissolved sulfides (DS) less than 0.1 (difficult and costly to achieve) to 0.3 mg/L. Maintain H 2 S in the air at less than 3 to 5 ppm. Increase pipe crown pH to 4.0 or higher

9 TECHNIQUES AVAILABLE TO CONTROL H 2 S CORROSION Oxidations systems: Pure oxygen injection Air injection Hydrogen peroxide Chlorine Potassium permanganate. Precipitation systems Iron salts Zinc salts pH elevation Other methods

10 HYDROGEN SULFIDE CONTROL AT ORLEANS PARISH Significant amount of sulfide generation occurs in the sanitary sewer systems of the New Orleans metropolitan area. Orleans Parish produces approximately 120 MGD of municipal wastewater S&WB has tried hydrogen peroxide and Bio-Kat addition Roughly 24 MGD is being treated with Bio-Kat The annual cost of Bio-Kat ≈ 0.6 million dollars The unit cost is roughly $25,000 per MGD treated.

11 BEST METHOD: PURE OXYGEN INJECTION A more cost-effective H 2 S control system is wastewater super-oxygenation. Oxygen can be generated in situ using modern technology. Pure oxygen is injected at selected sewage pumping stations. High oxygen transfer efficiency (>90%)

12 Typical in situ oxygen generation system using the pressure swing adsorption (PSA) technology (Source: OGSI.)

13 Schematic diagram of the ECO 2 oxygen injection system. (Clidence and Shissler, 2008).

14

15 Typical installation of the ECO 2 pure oxygen injection system at a raw sewage pumping station (Source: ECO 2 web site)

16 ADVANTAGES OF PURE OXYGEN INJECTION Wastewater remains aerobic through the treatment plant: No H 2 S generation No odors No corrosion Wastewater arrives partially treated to the treatment plant Modern technology makes this system cost effective Examples of positive results:

17 Untreated H 2 S levels in the Laguna Beach force main Source: Clidence and Schissler, WEF/A&WMA, 2008

18 H 2 S levels in the Laguna Beach force main after pure oxygen injection. Source: Clidence and Schissler, WEF/A&WMA, 2008

19 H 2 S in the sewer headspace near Gulf Pond force main discharge, Milford, Conn. Source: Bradstreet and Smith, WEFTEC 2012

20 Cost of pure oxygen injection systems Milford, Conn.: Unit annual cost = $5,400/MGD Madison, ME: Unit annual cost = $5,200/MGD Elk Vale, SD: Unit annual cost = $5,400/MGD Trinity River Authority, Dallas, TX (primary clarifiers, 150 MGD): Unit annual cost = 1,700/MGD The cost of super-oxygenation for H 2 S and corrosion control is close to one-fifth of the cost of Bio-Kat.

21 HYDROGEN SULFIDE CONTROL AT JEFFERSON PARISH Jefferson Parish tried iron salts addition on West Bank At Marrero WWTP got black precipitate (Fe 2 S) all over the plant Got Fe(HO) 3 precipitate at the chlorination chamber Suspended iron salt addition in 1997. Severe odor and corrosion problems at the East Bank Wastewater Treatment Plant UNO has been cooperating with JP by developing a pure oxygen injection program

22 Pure Oxygen Injection At JP East Bank Pumping Station System Assumptions made to calculate oxygen demand: Oxygen concentration to meet the oxygen uptake rate = 10 x HRT. HRT was based on continuous flow at average dry weather flow rate Oxygen concentration needed to oxidize hydrogen sulfide = 5 x DS at each pumping station. DS data base was limited. Calculations were performed, and several changes and adjustments were made. Final amounts of oxygen to be added are on the next diagram.

23 G6-9 Helios 3340.4 gpm 55.1 ft 0.77 fps G6-4 Galleria 3795.5 gpm 60.1 ft 7136 gpm 1.27 fps F6-5 Cleary & W. Napoleon 2966.6 gpm 53.8 ft 10,102.5 gpm 1.79 fps F6-11 Houma & W. Napoleon 2012.6 gpm 66.4 ft F6-5 Clearview & W. Napoleon 2456.7 gpm 46.0 ft 12,115.1 gpm 2.15 fps F6-2 W. Napoleon 8065.0 gpm 66.64 ft 14,571.8 gpm 2.04 fps E6-7 Transcont. & Vineland 8153.3 gpm 32.66 ft 3.7 fps 30,790.0 gpm 2.89 fps E5-4 Transcontinental & W. Metairie 3384.6 gpm 42.6 ft 34,174.6 gpm 2.69 fps EBWWTP SCHEMATIC DIAGRAM OF THE EAST BANK SEWAGE PUMPING SYSTEM 22,636.8 gpm 2.12 fps

24 SECOND PHASE, JEFFERSON PARISH Implement the oxygen injection program. Monitor the successful removal of hydrogen sulfide in the pumping system. Monitor the remaining odor levels at the EB WWTP. If odors continue, focus on improving the sludge management system. Inject pure oxygen into sludge holding tank.

25 Questions?


Download ppt "ODOR AND CORROSION CONTROL IN SEWERAGE SYSTEMS Enrique J. La Motta, Ph.D., P.E. Professor of Civil and Environmental Engineering THE SOUTHEAST SYMPOSIUM."

Similar presentations


Ads by Google