# Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412.

## Presentation on theme: "Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412."— Presentation transcript:

Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412

Introduction Objective of this project is to design and optimize a four bar mechanism for a vehicle to climb over obstacle of a given height. Use different approaches to find 1. Shortest Link 2. Reducing Peak Torque. 3. Reducing The Fluctuation of the torque.

Matlab code for solving the 12 equations P1 = x1 +i*y1; P1 = x1 +i*y1; P2 = x2 +i*y2; P2 = x2 +i*y2; P3 = x3 +i*y3; P3 = x3 +i*y3; delta2 = P2-P1; delta2 = P2-P1; delta3 = P3-P1; delta3 = P3-P1; alpha2 = Alpha2*cv; alpha2 = Alpha2*cv; alpha3 = Alpha3*cv; alpha3 = Alpha3*cv; Xp = [Mx Nx]; Xp = [Mx Nx]; Yp = [My Ny]; Yp = [My Ny]; for n = 1:2 for n = 1:2 R1 = (x1-Xp(n)) + i*(y1-Yp(n)); R1 = (x1-Xp(n)) + i*(y1-Yp(n)); R2 = (x2-Xp(n)) + i*(y2-Yp(n)); R2 = (x2-Xp(n)) + i*(y2-Yp(n)); R3 = (x3-Xp(n)) + i*(y3-Yp(n)); R3 = (x3-Xp(n)) + i*(y3-Yp(n)); R1mag = abs(R1); R1mag = abs(R1); R2mag = abs(R2); R2mag = abs(R2); R3mag = abs(R3); R3mag = abs(R3); zeta1 = atan2(imag(R1),real(R1)); zeta1 = atan2(imag(R1),real(R1)); zeta2 = atan2(imag(R2),real(R2)); zeta2 = atan2(imag(R2),real(R2)); zeta3 = atan2(imag(R3),real(R3)); zeta3 = atan2(imag(R3),real(R3)); C1 = R3mag*cos(alpha2+zeta3)- R2mag*cos(alpha3+zeta2); C1 = R3mag*cos(alpha2+zeta3)- R2mag*cos(alpha3+zeta2); C2 = R3mag*sin(alpha2+zeta3)- R2mag*sin(alpha3+zeta2); C2 = R3mag*sin(alpha2+zeta3)- R2mag*sin(alpha3+zeta2); C3 = R1mag*cos(alpha3+zeta1)- R3mag*cos(zeta3); C3 = R1mag*cos(alpha3+zeta1)- R3mag*cos(zeta3); C4 =- R1mag*sin(alpha3+zeta1)+R3mag*sin(zeta3); C4 =- R1mag*sin(alpha3+zeta1)+R3mag*sin(zeta3); C5 = R1mag*cos(alpha2+zeta1)- R2mag*cos(zeta2); C5 = R1mag*cos(alpha2+zeta1)- R2mag*cos(zeta2); C6 =- R1mag*sin(alpha2+zeta1)+R2mag*sin(zeta2); C6 =- R1mag*sin(alpha2+zeta1)+R2mag*sin(zeta2); A1 = -C3^2 - C4^2; A1 = -C3^2 - C4^2; A2 = C3*C6 - C4*C5; A2 = C3*C6 - C4*C5; A3 = -C4*C6 - C3*C5; A3 = -C4*C6 - C3*C5; A4 = C2*C3 + C1*C4; A4 = C2*C3 + C1*C4; A5 = C4*C5 - C3*C6; A5 = C4*C5 - C3*C6; A6 = C1*C3 - C2*C4; A6 = C1*C3 - C2*C4; K1 = A2*A4 + A3*A6; K1 = A2*A4 + A3*A6; K2 = A3*A4 + A5*A6; K2 = A3*A4 + A5*A6; K3 = (A1^2-A2^2-A3^2-A4^2-A6^2)/2; K3 = (A1^2-A2^2-A3^2-A4^2-A6^2)/2;

if n == 1 if n == 1 beta3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); beta3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); beta2_1 = atan2(-(A3*sin(beta3_1)+A2*cos(beta3_1)+A4),... beta2_1 = atan2(-(A3*sin(beta3_1)+A2*cos(beta3_1)+A4),... -(A5*sin(beta3_1)+A3*cos(beta3_1)+A6)); -(A5*sin(beta3_1)+A3*cos(beta3_1)+A6)); beta2_2 = atan2(-(A3*sin(beta3_2)+A2*cos(beta3_2)+A4),... beta2_2 = atan2(-(A3*sin(beta3_2)+A2*cos(beta3_2)+A4),... -(A5*sin(beta3_2)+A3*cos(beta3_2)+A6)); -(A5*sin(beta3_2)+A3*cos(beta3_2)+A6)); if (abs(beta2_1-alpha2) < 10^(-6) && abs(beta3_1-alpha3) < 10^(-6)) if (abs(beta2_1-alpha2) < 10^(-6) && abs(beta3_1-alpha3) < 10^(-6)) beta2 = beta2_2; beta2 = beta2_2; beta3 = beta3_2; beta3 = beta3_2; else else beta2 = beta2_1; beta2 = beta2_1; beta3 = beta3_1; beta3 = beta3_1; end end else else sigma3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_1 = 2*atan2(K2 + sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); sigma3_2 = 2*atan2(K2 - sqrt(K1^2+K2^2-K3^2),K1+K3); sigma2_1 = atan2(-(A3*sin(sigma3_1)+A2*cos(sigma3_1)+A4),... sigma2_1 = atan2(-(A3*sin(sigma3_1)+A2*cos(sigma3_1)+A4),... -(A5*sin(sigma3_1)+A3*cos(sigma3_1)+A6)); -(A5*sin(sigma3_1)+A3*cos(sigma3_1)+A6)); sigma2_2 = atan2(-(A3*sin(sigma3_2)+A2*cos(sigma3_2)+A4),... sigma2_2 = atan2(-(A3*sin(sigma3_2)+A2*cos(sigma3_2)+A4),... -(A5*sin(sigma3_2)+A3*cos(sigma3_2)+A6)); -(A5*sin(sigma3_2)+A3*cos(sigma3_2)+A6)); if (abs(sigma2_1-alpha2) < 10^(-6) && abs(sigma3_1-alpha3) < 10^(-6)) if (abs(sigma2_1-alpha2) < 10^(-6) && abs(sigma3_1-alpha3) < 10^(-6)) sigma2 = sigma2_2; sigma2 = sigma2_2; sigma3 = sigma3_2; sigma3 = sigma3_2; else else sigma2 = sigma2_1; sigma2 = sigma2_1; sigma3 = sigma3_1; sigma3 = sigma3_1; end end end end

Matlab Code For Synthesis Amat = [(exp(i*beta2) -1), (exp(i*alpha2) -1);(exp(i*beta3) -1), (exp(i*alpha3) -1)]; Amat = [(exp(i*beta2) -1), (exp(i*alpha2) -1);(exp(i*beta3) -1), (exp(i*alpha3) -1)]; Bvec = [delta2;delta3]; Bvec = [delta2;delta3]; X_L = inv(Amat)*Bvec; X_L = inv(Amat)*Bvec; W1 = X_L(1,1); Z1 = X_L(2,1); A = P1-Z1-W1; W1 = X_L(1,1); Z1 = X_L(2,1); A = P1-Z1-W1; Amat = [(exp(i*sigma2) -1), (exp(i*alpha2) -1);(exp(i*sigma3) - 1), (exp(i*alpha3) -1)]; Amat = [(exp(i*sigma2) -1), (exp(i*alpha2) -1);(exp(i*sigma3) - 1), (exp(i*alpha3) -1)]; Bvec = [delta2;delta3]; Bvec = [delta2;delta3]; X_R = inv(Amat)*Bvec; X_R = inv(Amat)*Bvec; U1 = X_R(1,1); S1 = X_R(2,1); A_p = P1-S1-U1; U1 = X_R(1,1); S1 = X_R(2,1); A_p = P1-S1-U1;

Compact Design How did we find the shortest linklengths? Solving the vector equations Confining the four bar path to go through three points We obtained 12 equations and 18 unknowns We were left with 6 free choices Results: Sum of Four-links = 0.8685m

Animation for the lowest link lengths

Lowest peak Torque How did we find the lowest torque? Using Energy Method The main equation used for torque was Results: Lowest Peak Torque = 0.2665Nm

AxR4 = -(.5*r4*cos(th4)*th4dot^2 +.5*r4*sin(th4)*th4ddot); AxR4 = -(.5*r4*cos(th4)*th4dot^2 +.5*r4*sin(th4)*th4ddot); AyR2 = -.5*r2*sin(th2)*(th2dot)^2; AyR2 = -.5*r2*sin(th2)*(th2dot)^2; AyR3 = -r2*sin(th2)*(th2dot)^2 -.5*r3*sin(th3)*(th3dot)^2 +.5*r3*cos(th3)*(th3ddot); AyR3 = -r2*sin(th2)*(th2dot)^2 -.5*r3*sin(th3)*(th3dot)^2 +.5*r3*cos(th3)*(th3ddot); AyR4 = -.5*r4*sin(th4)*th4dot^2 +.5*r4*cos(th4)*th4ddot; AyR4 = -.5*r4*sin(th4)*th4dot^2 +.5*r4*cos(th4)*th4ddot; Torque2 = abs((m2*AxR2*VxR2 + m2*VyR2*(AyR2+9.81) + m3*AxR3*VxR3 + m3*VyR3*(AyR3+9.81) + I3*th3ddot*th3dot + m4*AxR4*VxR4 + m4*VyR4*(AyR4+9.81) + I4*th4ddot*th4dot)); Torque2 = abs((m2*AxR2*VxR2 + m2*VyR2*(AyR2+9.81) + m3*AxR3*VxR3 + m3*VyR3*(AyR3+9.81) + I3*th3ddot*th3dot + m4*AxR4*VxR4 + m4*VyR4*(AyR4+9.81) + I4*th4ddot*th4dot)); a(y) = Torque2; a(y) = Torque2; y = y+1; y = y+1; end end a a max(a) max(a) end end

Animation For The Lowest Peak Torque

Lowest Torque Fluctuation How did we get the lowest Torque Fluctuation? Results: Lowest torque fluctuation =

Matlab Code For The Lowest Torque Fluctuation

Animation For The Lowest Torque Fluctuation

Solid Edge For Compact Design

Solid Edge For Lowest Torque

Solid Edge For Lowest Torque Fluctuation

Questions?

The End

Download ppt "Group - E Group Members Burdukov, Ilya Igorevich Lewczyk, Tomasz Sithambaram, Sasitharan Penmatcha, Bharath Steszewski, Andrew Joseph MAE412."

Similar presentations