Download presentation

Presentation is loading. Please wait.

Published byJessica Knight Modified over 4 years ago

2
What can we say about probability? It is a measure of likelihood, uncertainty, possibility, … And it is a number, numeric measure

3
Set: A set is a collection of distinct objects, considered as an object in its own right Example: A class of stat225 students NBA teams Result of a football game for a team (win, lose, tie) Outcomes of rolling a die ( 1, 2, 3, 4, 5, 6)

4
Experiment: A process that generates well-defined outcomes. *** You must know what could possibly happen before performing the experiment. Example: Roll a die: YES ? Throw a stone out of window: NO.

5
Sample space Dont get confused with sample and sampling in statistics. A sample space for an experiment is the set of ALL experimental outcomes. Example: Toss a coin: {Head, Tail} Take an exam or quiz: { All the possible grades } Inspection of a manufactured part: {defective, non- defective}

6
Some notes on sample space: 1. It could be finite or infinite, i.e., there could be infinitely many possibilities, but you still must know all of them. Example, choosing a point on a segment, there are infinitely many choices but you know it must be on the segment. 2. Not all the sample points in the sample space are equally likely. Example: Getting a royal flush, full house or just a pair in a poker game.

7
Event: A collection of sample points. It is an outcome from an experiment that may include one or more sample points. Examples: Toss a coin and get a head. Roll a die and get a 5. Toss a coin twice and get two heads. Roll a die and get an even number.

8
Complement of an event A: Notation: A c Also an event Includes ALL sample points that are not in A. Example: A: Roll a die and get an even number, A c : Roll a die and get an odd number.

9
We use P(A) to represent the probability that one event occurs. Clearly: P(A) + P(A c )=1. A and A c are called mutually exclusive, which means any sample point call fall in either A only or A c only, but not both.

10
Some of tossed a coin twice. 1. What is the sample space: { HH, HT, TH, TT } 2. Let A = { toss the coin twice and get two heads}, then P(A)=? 3. Let B = { toss the coin twice and get at least one head}, then P(B)=? 4. What is B c, and P(B c )=?

11
We have 20 fruits in a box, 10 apples, 6 pears and 4 peaches. If A={pick a fruit from the box and get an apple}, then P(A)=? If B={pick a fruit from the box and it is NOT an apple}, then P(B)=?

12
50 balls are put in one box, 25 white, 15 red and 10 green. A={ pick a ball and it is green }, P{A}=? B={pick a ball and it is colored}, P{B}=?

13
Venn diagram: Illustrates the concept of complement. Somewhat like a crosstabulation.

14
# 1. A class of 30 students took 2 midterms during a semester. 22 of them passed the first one and 26 of them passed the second one. If 3 students failed both, find the number of students who passed the each of the two midterms and failed the other. Answer: 21 passed both, 1 passed the first but failed the second, 5 passed the second but failed the first

15
#2. We have a box and 30 balls, 16 are white and the rest are colored; 9 are plastic and the others are made of rubber. If there are 11 white rubber balls, show the breakdown of balls by color and material. Answer: 5 white plastic; 11 white rubber; 4 colored plastic and 10 colored rubber.

16
#3. In a class of 30 students, 20 are male, 15 are white and 5 are black females. Assuming only no students of other race in the class. Find the break down of students by race and gender. Answer: 10 black male; 5 black female; 5 white female and 10 white male.

17
In #1, what is the probability of finding a student who passed at least one midterm? 27/30 In #2, pick a ball at random, what is the probability of getting a white plastic? 5/30 In #3, pick a student from the class and what is the probability of getting a white female? 5/30

Similar presentations

OK

Sixth lecture Concepts of Probabilities. Random Experiment Can be repeated (theoretically) an infinite number of times Has a well-defined set of possible.

Sixth lecture Concepts of Probabilities. Random Experiment Can be repeated (theoretically) an infinite number of times Has a well-defined set of possible.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on conjunctive use of water Ppt on save tigers in india download music Ppt on viruses and bacteria video Ppt on polynomials and coordinate geometry proof Ppt on classroom management Ppt on power system harmonics pdf Ppt on content development training By appt only business cards Ppt on computer system for class 9 Ppt on main bodies of unorthodox