Download presentation

Presentation is loading. Please wait.

Published byAvery Gallagher Modified over 4 years ago

1
Copyright 2008, Scott Gray1 Propositional Logic 3) Truth Tables

2
Copyright 2008, Scott Gray 2 Table Definition of NOT ~AA TFTF FTFT

3
Copyright 2008, Scott Gray 3 Table Definition of OR A v BA B T T F T T F F F TTTFTTTF

4
Copyright 2008, Scott Gray 4 Table Definition of AND A & BA B T T F T T F F F TFFFTFFF

5
Copyright 2008, Scott Gray 5 Table Definition of IF A B T T T F F T F F TFTTTFTT This is known as material implication

6
Copyright 2008, Scott Gray 6 Table Definition of IF & ONLY IF A B T T F T T F F F TFFTTFFT

7
Copyright 2008, Scott Gray 7 Truth Tables A function (mapping out) of all possible combinations of truth and falsity

8
Copyright 2008, Scott Gray 8 Truth Table Examples AA TFTFT

9
Copyright 2008, Scott Gray 9 Truth Table Examples, cont. A B T T F T T F F F FTTFFTTF Do you recognize this operator? It is the exclusive OR (though that isnt the symbol for it!)

10
Copyright 2008, Scott Gray 10 Operator Usage We can use ~ and v to do & A & BA B T T T F F T F F TFFFTFFF ~(~A v ~B) T FT F FT F F T T F T F Prove: A B = ~A v B Prove: A B = ~(~(~A v B) v ~(~B v A))

11
Copyright 2008, Scott Gray 11 Further Examples P (~Q v R)P Q R T T T T T F T F T T F F F T T F T F F F T F F F T F T F F F T T T T F T T F F T T T P (~ Q v R) 1 23

12
Copyright 2008, Scott Gray 12 Some Additional Definitions Tautology = main column is all true Contingent = main column has at least one true and at least one false Contradiction = main column is all false

13
Copyright 2008, Scott Gray 13 Contradiction Example ~(A B) & B A B T T T F F T F F T F T F F F T F 132

14
Copyright 2008, Scott Gray 14 A Proof P Q P --------- Q Look of all true premises and a false conclusion, if found, the argument is invalid This argument is valid This argument is known as Modus Ponens P Q T T T F F T F TFTTTFTT P TTFFTTFF Q TFTFTFTF 1 st premise2 nd premiseconclusion

15
Copyright 2008, Scott Gray 15 Another Proof P v ~Q ~P --------- ~(P Q) P v ~QP Q T T T F F T F T F T F T ~P FFTTFFTT ~(P Q) F T T F F T Is this valid or invalid? This argument is invalid

16
Copyright 2008, Scott Gray 16 Assignments Review this lesson and ask questions if you dont understand Evaluate the following sentences using truth tables: 1.~P ~(P Q) 2.~(P v Q) (~P & ~Q) 3.(P (Q v ~R)) & ~R

17
Copyright 2008, Scott Gray 17 Assignments, cont. Prove whether the following are valid or invalid using truth tables: 4.P v Q, ~ Q P 5.~Q v R, ~R Q 6.~(P T), ~R v T ~(P R) 7.~(P v Q), P R ~Q & ~R

Similar presentations

OK

Symbolic Logic and Rules of Inference. whatislogic.php If Tom is a philosopher, then Tom is poor. Tom is a philosopher.

Symbolic Logic and Rules of Inference. whatislogic.php If Tom is a philosopher, then Tom is poor. Tom is a philosopher.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google

Ppt on review of literature Ppt on art of war quote How to download slideshare ppt on negotiations Ppt on hdfc bank Ppt on mahatma gandhi biography Ppt on cement industry analysis Ppt on 60 years of indian parliament live Ppt on 60 years of indian parliament latest Ppt on power system harmonics analysis Ppt on history of google