# Outliers Because we square errors, a few points with large errors can have large effect on fitted response surface Both in simulations and in experiments.

## Presentation on theme: "Outliers Because we square errors, a few points with large errors can have large effect on fitted response surface Both in simulations and in experiments."— Presentation transcript:

Outliers Because we square errors, a few points with large errors can have large effect on fitted response surface Both in simulations and in experiments there is potential for preposterous results due to failures of algorithms or tests Points with large deviations from fit are called outliers. Key question is how to distinguish between outliers that should be removed and ones that should be kept.

Weighted least squares Weighted least squares was developed to allow us to assign weights to data based on confidence or relevance. Most popular use of weighted least squares is for moving least squares, where we refit data for each prediction point with high weights for nearby data. Linear interpolation from a table is an extreme form. Error measure Normal equations

Determination of weights

Example x = (1:10)'; y = 10 - 2*x + randn(10,1); y(10) = 0; bls = regress(y,[ones(10,1) x]) brob = robustfit(x,y) bls = 7.8518 -1.3644 brob = 8.4504 -1.5278 >> scatter(x,y,'filled'); grid on; hold on plot(x,bls(1)+bls(2)*x,'r','LineWidth',2); plot(x,brob(1)+brob(2)*x,'g','LineWidth',2) legend('Data','Ordinary Least Squares','Robust Regression')

Download ppt "Outliers Because we square errors, a few points with large errors can have large effect on fitted response surface Both in simulations and in experiments."

Similar presentations