Presentation is loading. Please wait.

Presentation is loading. Please wait.

How drugs act: Molecular aspects M.Sc. In Pharm (Pharmacology)

Similar presentations


Presentation on theme: "How drugs act: Molecular aspects M.Sc. In Pharm (Pharmacology)"— Presentation transcript:

1 How drugs act: Molecular aspects M.Sc. In Pharm (Pharmacology)
Pharmacodynamics How drugs act: Molecular aspects Pawitra Pulbutr B.Pharm (Hon), M.Sc. In Pharm (Pharmacology)

2 Objectives อธิบายถึงเป้าหมายที่ยาออกฤทธิ์ที่สำคัญได้
อธิบายถึงกลไกการออกฤทธิ์ของยาผ่าน Receptor ชนิด Channel-linked receptor, G-protein receptor, Kinase-linked receptor และ Receptor that regulate gene transcription รวมทั้งความแตกต่างของการออกฤทธิ์ผ่านReceptors แต่ละชนิดได้ อธิบายถึงกลไกการออกฤทธิ์ของยาผ่าน Ion channel อธิบายถึงกลไกการออกฤทธิ์ของยาผ่าน Enzymes อธิบายถึงกลไกการออกฤทธิ์ของยาผ่าน Carrier molecules

3 Chemotherapy >>> Anticancer, Antimicrobial
Target for drug action Protein Receptors Ion channels Enzymes Carrier molecules Other :- Tubulin, DNA, RNA Chemotherapy >>> Anticancer, Antimicrobial

4 ตัวรับสัญญาณของเซลล์ เซลล์ทำงานได้สอดคล้องกัน
Receptors ตัวรับสัญญาณของเซลล์ เซลล์ทำงานได้สอดคล้องกัน การสื่อสารกันระหว่างเซลล์ สาร = Chemical messenger… neurotransmitters, hormones, cytokines, growth factors Chemical messenger Receptor

5 Drug (Agonist or Antagonist) Physiological response
Ligand Chemical messenger Drug (Agonist or Antagonist) Receptor Signal transduction Physiological response

6 Physiological response No Physiological response
Drugs act at receptor Agonist Antagonist Receptor activation Block receptor No activation Physiological response No Physiological response

7 Receptor of chemical messenger in the body
Drugs act at receptor Receptor of chemical messenger in the body Receptor Receptor of specific drug Receptors are mostly named after their ligand.

8 Receptor classification by their localization
Cell membrane receptor Nuclear receptor or intracellular receptor Kinase linked receptor Channel linked receptor (Ionotropic receptor) Receptor families G-protein coupled receptor (Metabotropic receptor, 7-transmembrane receptor) Receptor that regulate gene transcription

9 Figure 2.1 Types of receptor-effector linkage

10 Channel linked receptor
Nicotinic receptor…prototype ACh …natural ligand 5 subunits 2  + 1 + 1 + 1  Ligand binding Channel lining One subunit One receptor

11 G-protein coupled receptor
(GPCR) Cell membrane receptor Single polypeptide chain Muscarinic receptor Adrenergic receptor Dopamine receptor 5-HT receptor Opiate receptor GPCR >>> Major drug target

12 G-protein coupled receptor
Single peptide Comprised of….. 1. Extracellular N-terminal 2. 7-Transmembrane alpha helices ligand binding Linked with “G-protein” 3. Intracellular C-terminal

13 Second messenger production
Role of G-protein Effector molecule G protein “free” Second messenger production GTPase

14 Effector molecule or target protein
1. Membrane enzyme Adenylate cyclase Phospholipase C 2. Ion channels

15

16 Enzyme Ion channel G-protein coupled receptor Ligand
Active G protein (  GTP) Enzyme Ion channel Open channel Adenylate cyclase Phospholipase C Increase intracellular calcium IP3 cAMP cAMP dep. Protein kinase DAG Activate protein kinase C phosphorylate enzyme Ion channel

17 Tyrosine kinase receptor/ Guanylate cyclase linked receptor
Insulin receptor Cytokine receptor *** Growth factor receptor *** Guanylate cyclase linked receptor Atrial natriuretic peptide receptor

18 Kinase linked receptor Catalytic domain (Enzyme activity)
Ligand binding 1. Extracellular domain 2. Transmembrane region 3. Intracellular domain Single helix Catalytic domain (Enzyme activity)

19 Ras = membrane protein Ras/ Raf pathway

20 Jak/ Stat pathway Jak = cytosolic Tyrosine kinase
Stat = transcriptional factor

21 Receptor that regulate gene transcription
Intracellular receptor (Nuclear receptor) Lipophilic ligand Steroid receptor, Thyroid receptor, Vitamin A receptor, Vitamin D receptor

22 Receptor Structure Zinc finger Bind with DNA at response element 1. DNA binding domain 2. Ligand binding domain 3. Transcription control domain

23 Peroxisome Proliferator Activated Receptor (PPARs)
Nuclear receptor PPAR alpha, PPAR beta, PPAR gamma

24 Figure 2.1 Types of receptor-effector linkage

25 Receptor dynamics Tolerance
Prolonged agonist activation Desensitization Decrease response (decrease sensitivity) fast occur Phosphorylation of RC >>> Steric hindrance Receptor down regulation Decrease number of receptor slow occur… receptor internalization Decrease Response Tolerance

26 Receptor upregulation
Prolonged antagonist blockade Increase number of receptor Over Response -blocker (-adrenergic receptor antagonist) May induce RC upregulation If sudden stop >>> Over response >>> hypertension Should be slowly stop the drugs

27 Drugs which directly acting at ion channels
1. Block ion channels Physical properties Local anesthetics Block sodium channels See table 2.2

28 2. Bind with accessory site on ion channel
Dihydropyridine Calcium channel blocker Benzodiazepine Chloride channel opening See table 2.2

29 Enzymes 1. Enzyme inhibitor 2. False substrate Substrate analog
Reversible Irreversible 2. False substrate Substrate analog Abnormal products See table 2.3

30 Carrier molecules

31 Inhibit carrier molecule function
Carrier molecules Inhibitors Inhibit carrier molecule function 2. False substrates False uptake See table 2.4

32 Chemotherapy >>> Anticancer, Antimicrobial
Target for drug action Protein Receptors Ion channels Enzymes Carrier molecules Other :- Tubulin, DNA, RNA Chemotherapy >>> Anticancer, Antimicrobial

33 A, B, C, D, F


Download ppt "How drugs act: Molecular aspects M.Sc. In Pharm (Pharmacology)"

Similar presentations


Ads by Google