Presentation is loading. Please wait.

Presentation is loading. Please wait.

BJT, Bipolar Junction Transisor

Similar presentations


Presentation on theme: "BJT, Bipolar Junction Transisor"— Presentation transcript:

1 BJT, Bipolar Junction Transisor
Base Current Controls Output current Bollen

2 AGENDA BJT transistorman Transistor types Bipolar Junction Transistor
BJT models parameters water model NPN and PNP operation modes switch open switch closed BJT linear, controlled current source active operation characteristics DC input characteristics ac input characteristics BJT DC biasing circuits base bias base bias + collector feedback base bias + emitter feedback voltage divider Bollen

3 BJT, transistor man Bollen

4 Transistor Types Output current controlled by input current BJT =
Bipolar Junction Transistor FET = Field Effect Transistor Output current controlled by input voltage Bollen

5 BJT, Bipolar Junction Transisor
Transistor = Transfer Resistor BE Forward bias, BC Reverse bias So low ohmic high ohmic Bollen

6 BJT, Bipolar Junction Transisor
Emitter = Sent electrons Base = Base Collector = Get electrons Bollen

7 BJT, Models Bollen

8 BJT, parameters Bollen

9 BJT, Water model Bollen

10 BJT, Water model Bollen

11 BJT, NPN and PNP Bollen

12 BJT, Operation modes Cut-off and saturation; BJT is used as a switch
Active operation Quiecent Point; BJT is used as a controlled current source, or analog amplifier Bollen

13 BJT, Switch open Bollen

14 BJT, Switch closed Bollen

15 BJT, Lineair, controlled current source
Bollen

16 BJT, active operation Bollen

17 BJT, characteristics DC model ac model
DC model; Vbe = 0V Ube, Uce, Ic, Ib, Ie Capitals ac model; re = 26mV/Ie ube, uce, ic, ib, ie Low cases Bollen

18 BJT, DC input characteristics
Vbe = 0V7 Bollen

19 BJT, AC input characteristics
re = 26mV/Ic The dynamic resistor can be calculated by the DC current Ic Bollen

20 BJT, characteristics Bollen

21 BJT, DC biasing circuits
A base bias B base bias + emitter feedback C base bias + collector feedback D voltage divider Bollen

22 BJT, base bias, introduction
Base current determined by Vcc, Rb and Vbe Bollen

23 BJT, base bias Calculate Ib and then Ic
Ic directly dependent on ß variation So, for stability a “bad” circuit Bollen

24 BJT, base bias load line Q-point = Quiecient point = Working point
Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” Bollen

25 BJT, base bias load line Reliable circuit = Q-point stability
Load line is the loading of the transistor seen from Uce (>0V7) Vcc and Rc determines the; “open voltage” and the “short circuit current” Bollen

26 BJT, base bias load line Vce always > 0V7 BC junction REVERSE
If Rc too big, transistor in saturation; then; Bollen

27 BJT, base bias load line Vce always > 0V7 BC junction REVERSE
If Vcc too small, transistor in saturation; then; Bollen

28 BJT, base bias example Calculate; Ib, Ic URc, Uc, Uce
Draw output caracteristic Calculate now; Uce if ß = 40 How many % did Uce Change Ib = 47 uA, Ic = 2,35 mA, URc = 5,17 V, Uc = 6,83 V, Uce = 6,83 V Uce (for ß = 40) = 7,86 Ξ 15 % Bollen

29 BJT, base bias example Ib = 33 uA, Ic = 2,9 mA URc = 7,9 V, Uc = 8,1 V
Rb = 282,5 kΩ, Ic = 3,2 mA, Rc = 1,855 kΩ Bollen

30 BJT, base bias example ß = 200, VRc = 8,8 V Vcc = 16 VRb = 765 kΩ
Bollen

31 BJT, base bias + emitter feedback
Base current determined by Vcc, Rb, Vbe and Ve More stable for ß variations, than base bias. Bollen

32 BJT, base bias + emitter feedback
Always calculate in the smallest current Ib !! Bollen

33 BJT, base bias + emitter feedback
Load line is the loading of the transistor seen from Uce (>0V7) Vcc, Rc and Re determines the; “open voltage” and the “short circuit current” Bollen

34 BJT, base bias + emitter feedback example
Calculate; Ib, Ic URc, Uc, Ue, Uce Draw output caracteristic Ib = 6,2 uA, Ic = 0,74 mA, URc = 8,9 V, Uc = 7,1 V, Ue =-0,9 V, Uce = 8,0 V Bollen

35 BJT, base bias + emitter feedback example
Calculate; Ib, Ie URe, Ue, Uce Draw output caracteristic Ib = 24 uA, Ie = 2,9 mA, URc = 3,5 V, Ue = -2,5 V, Uce = 2,5 V Bollen

36 BJT, base bias + collector/emitter feedback
If Ic > then Uc < then Ib < If Ic > then Uc < and Ue > then Ib < Bollen

37 BJT, base bias + collector feedback
Always calculate in the smallest current Ib !! The current through Rc is not Ic but Ic + Ib, so (β+1)Ib !!! If Ic rises for any reason, then Uc falls and also Ib decreases, so then Ic decreases Bollen

38 BJT, base bias collector feedback example
Calculate; Ib, ß, Ic Draw output caracteristic Ib = 13 uA, ß = 196, Ic = 2,5 mA Bollen

39 BJT, base bias collector/emitter feedback
Always calculate in the smallest current Ib !! Bollen

40 BJT, base bias collector/emitter feedback ex
Calculate; Ib, Ie URc, Uc, Ue, Uce Draw output caracteristic Ib = 11,8 uA, Ie = 1,1 mA URc = 5,2 V, Uc = 4,8 V Ue = 1,3 V, Uce = 3,5 V Bollen

41 BJT, voltage divider Vb is a stable voltage - 0,7 V =
so Ve is a stable voltage Ie is determined by Ve/ Re Ic = Ie . ß/(ß+1) Ic is very stable and nearly independent to ß variation, as long as ß is BIG in value 2 methods of calculating Ic - neglegting Ib, use voltage divider - not neglecting Ib and use thevenin Bollen

42 BJT, voltage divider, neglect Ib
So neglegt Ib to R2, or in general Ri >> R2 In practice 10 times bigger Bollen

43 BJT, voltage divider, exact, thevenin
Thevenin resistance R1 // R2 62k // 9k1= 7k9 Thevenin voltage Bollen

44 BJT, voltage divider, exact, thevenin
7k9 2V0 Ib = 20 uA Bollen

45 BJT, voltage divider, example
Thevenin resistance = 6k8 Thevenin voltage = 3V1 Ib = 18,8 uA Ic = 2,25 mA re = 11,5 Ω URc = 7V4 Uc = 10V6 Ue = 2V3 Uce = 5V1 Bollen

46 BJT, voltage divider, example
Thevenin resistance = 255k Thevenin voltage = 0V0 Ib = 14,3 uA Ic = 1,9 mA re = 14 Ω URc = 17V3 Uc = 0V7 Ue = -3V7 Uce = 4V4 Bollen

47 BJT Bollen

48 BJT Bollen


Download ppt "BJT, Bipolar Junction Transisor"

Similar presentations


Ads by Google