Download presentation

Presentation is loading. Please wait.

Published byJustin McLaughlin Modified over 5 years ago

1
**OPTICS BY THE NUMBERS L’Ottica Attraverso i Numeri**

Michael Scalora U.S. Army Research, Development, and Engineering Center Redstone Arsenal, Alabama, & Universita' di Roma "La Sapienza" Dipartimento di Energetica Rome, April-May 2004

2
**Soluzione Numeriche di Equazioni Nonlineari Accoppiate Usando il Predictor-Corrector Algorithm:**

More Examples

3
**…always finds a second order accurate **

…is just a Taylor expansion for ANY function …always finds a second order accurate solution to the generic differential equation

4
**…with appropriate initial conditions.**

Keep in mind that an nth order differential equation can always be reduced to n coupled equations of first order. Example 1: can be rewritten as the system: …with appropriate initial conditions.

5
**Con le condizioni iniziali:**

Significa: …da cui…

7
**Ricordiamo la Soluzione esatta:**

9
**Oscillatori smorzati accoppiati**

Example 2: driving force restoring force damping Oscillatori smorzati accoppiati

10
Numerical solution

13
**Calculation of numerical derivatives**

However, in reality dt cannot be zero, and so one incurs into an error: ?

14
**Consider the Taylor Expansion:**

Then: Calculating the numerical derivative as: Implies an error of order dt …

15
**. . . Usando la matematica del buon senso**

La derivata al punto puo essere definita in almeno due modi: mediando le due soluzioni… …si presume con un errore piu piccolo.

16
**Consider the Taylor Expansions:**

Subtract…

17
Add…

18
In general, Increasing precision requires more information, storage 2. An nth order differential equation can always be reduced to n coupled equations of first order. Ex.: 3. Calculating derivatives and integrating differential equations is more of an art than a science, and one uses whatever works. Care should be exercised when considering functions that vary rapidly in space or time.

19
**We have all the elements for a simple one **

dimensional electromagnetic pulse propagation algorithm

20
Combine and solve for

21
Initial Condition

22
**Propagation in free Space**

23
n=1 n=2 Incident transmitted |E|2 reflected

24
**L’equazione di secondo grado:**

Another point of view: L’equazione di secondo grado: Diventa due equazioni accoppiate di primo grado… …che sono le equazioni di Maxwell in una dimensione e il tempo cioe il punto di partenza.

25
**Algebraically Solve for**

26
**Algebraically Solve for**

27
**1. The SVEA, the Wave Equation, and Diffraction**

2. Spectral Methods and Free-Space Diffraction

28
Diffraction The Bending of Light Around Corners l0 l0 a a L ray optics wave optics L

29
l0 a L ray optics wave optics

30
**Assumption: the beam envelpe does not vary in time **

so-called CW (continuous wave) beam This term decribes diffraction

31
**E(x,z) e’ un inviluppo che varia lentamente **

For simplicity, let’s assume only one transverse dimension: Assume… E(x,z) e’ un inviluppo che varia lentamente nello spazio rispetto a l, e nel tempo rispetto a t=l/c. Apply the SVEA…

32
**We may also define the Fresnel number as…**

Il fascio non diffrange: Ray optics.. Regime di Forte diffrazzione.

33
**How to calculate diffraction using**

the wave equation Confrontiamo… Con…

34
Combine and solve for

35
**We can proceed as follows:**

Let… Substitute and solve for

36
**Ci sono altri modi di procedere che non richiedono un’impostazione **

cosi onerosa dal punto di vista del numero di varibili e vettori di cui tener conto. Ci occuperemo di metodi cosidetti spettrali.

37
**How to calculate diffraction using the wave equation…**

Useful properties of the Fourier Transform: Derivatives… N is the number of points used to discretize the space x in units dx.

38
**Some Advantages of using Spectral (FT) methods**

calculation of all kinds of derivatives is simple derivatives are extremely accurate simple algorithm Some Disadvantages It is slower Functions should be very smooth (which usually are)

39
**observable, we need to take the inverse transform:**

Taking the FT of both sides with respect to x… And… …is the solution in q-space. To find the solution in x-space, where things are observable, we need to take the inverse transform:

40
Algorithm: Trasformata di Fourier (FT) del campo iniziale Moltiplicazione per il propagatore Transformata inversa di tutto

41
Examples: single slit

42
Direction of Propagation

43
Direction of Propagation

44
Example2: double slit Poisson Spot

46
**Per aperture con geometrie piu complicate, e.g. **

Apertura Circolare o quadrata, e’ necessario Ritornare alle due dimensioni trasverse:

47
Circular Aperture

48
Square Aperture

49
Square Aperture

50
Algorithm: Trasformata di Fourier (FT) del campo iniziale Moltiplicazione per il propagatore Transformata inversa di tutto

51
**Removing the second order spatial derivative also means **

making the Paraxial Wave Approximation: the beam radius cannot be too small or inconsistencies with experimental observations may arisem since the wave tends to diffract very fast, contrary to expectations. This problem may be partially cured as follows:

Similar presentations

OK

Finite Difference Discretization of Hyperbolic Equations: Linear Problems Lectures 8, 9 and 10.

Finite Difference Discretization of Hyperbolic Equations: Linear Problems Lectures 8, 9 and 10.

© 2018 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google