Download presentation
Presentation is loading. Please wait.
Published byYuliana Makmur Modified over 5 years ago
1
Simplex Method 1 This presentation shows how the tableau method is used to solve a simple linear programming problem in two variables: Maximising subject to three constraints.
2
LINEAR PROGRAMMING Example 1 Maximise I = x + 0.8y
subject to x + y 1000 2x + y 1500 3x + 2y 2400 Initial solution: I = 0 at (0, 0)
3
LINEAR PROGRAMMING Example 1 Maximise I = x + 0.8y subject to x + y 1000 2x + y 1500 3x + 2y 2400 Maximise I where I - x - 0.8y = 0 subject to x + y + s = 1000 2x + y s = 1500 3x + 2y s3 = 2400
4
SIMPLEX TABLEAU Initial solution x y s1 s2 s3 RHS
Basic variable x y s1 s2 s3 RHS 1 1000 2 1500 3 2400 I -1 -0.8 I = 0, x = 0, y = 0, s1 = 1000, s2 = 1500, s3 = 2400
5
Most negative number in objective row
PIVOT 1 Choosing the pivot column Basic variable x y s1 s2 s3 RHS 1 1000 2 1500 3 2400 I -1 -0.8 Most negative number in objective row
6
Minimum of -values gives 2 as pivot element
Choosing the pivot element Basic variable x y s1 s2 s3 RHS -values 1 1000 1000/1 2 1500 1500/2 3 2400 2400/3 I -1 -0.8 Minimum of -values gives 2 as pivot element
7
Divide through the pivot row by the pivot element
Making the pivot Basic variable x y s1 s2 s3 RHS 1 1000 0.5 750 3 2 2400 I -1 -0.8 Divide through the pivot row by the pivot element
8
Objective row + pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 1000 0.5 750 3 2 2400 I -0.3 Objective row + pivot row
9
First constraint row - pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 3 2 2400 I -0.3 First constraint row - pivot row
10
Third constraint row – 3 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 -1.5 150 I -0.3 Third constraint row – 3 x pivot row
11
PIVOT 1 New solution x y s1 s2 s3 RHS
Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 -1.5 150 I -0.3 I = 750, x = 750, y = 0, s1 = 250, s2 = 0, s3 = 150
12
LINEAR PROGRAMMING Example Maximise I = x + 0.8y
subject to x + y 1000 2x + y 1500 3x + 2y 2400 Solution after pivot 1: I = 750 at (750, 0)
13
Most negative number in objective row
PIVOT 2 Choosing the pivot column Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 -1.5 150 I -0.3 Most negative number in objective row
14
Minimum of -values gives 0.5 as pivot element
Choosing the pivot element Basic variable x y s1 s2 s3 RHS -values 0.5 1 -0.5 250 250/0.5 750 750/0.5 -1.5 150 150/0.5 I -0.3 Minimum of -values gives 0.5 as pivot element
15
Divide through the pivot row by the pivot element
Making the pivot Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 -3 2 300 I -0.3 Divide through the pivot row by the pivot element
16
Objective row + 0.3 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 0.5 1 -0.5 250 750 -3 2 300 I -0.4 0.6 840 Objective row x pivot row
17
First constraint row – 0.5 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 0.5 750 -3 2 300 I -0.4 0.6 840 First constraint row – 0.5 x pivot row
18
Second constraint row – 0.5 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 2 600 -3 300 I -0.4 0.6 840 Second constraint row – 0.5 x pivot row
19
PIVOT 2 New solution x y s1 s2 s3 RHS
Basic variable x y s1 s2 s3 RHS 1 -1 100 2 600 -3 300 I -0.4 0.6 840 I = 840, x = 600, y = 300, s1 = 100, s2 = 0, s3 = 0
20
LINEAR PROGRAMMING Example Maximise I = x + 0.8y
subject to x + y 1000 2x + y 1500 3x + 2y 2400 Solution after pivot 2: I = 840 at (600, 300)
21
Most negative number in objective row
PIVOT 3 Choosing the pivot column Basic variable x y s1 s2 s3 RHS 1 -1 100 2 600 -3 300 I -0.4 0.6 840 Most negative number in objective row
22
Minimum of -values gives 1 as pivot element
Choosing the pivot element Basic variable x y s1 s2 s3 RHS -values 1 -1 100 100/1 2 600 600/2 -3 300 I -0.4 0.6 840 Minimum of -values gives 1 as pivot element
23
Divide through the pivot row by the pivot element
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 2 600 -3 300 I -0.4 0.6 840 Divide through the pivot row by the pivot element
24
Objective row + 0.4 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 2 600 -3 300 I 0.4 0.2 880 Objective row x pivot row
25
Second constraint row – 2 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 -2 400 -3 2 300 I 0.4 0.2 880 Second constraint row – 2 x pivot row
26
Third constraint row + 3 x pivot row
Making the pivot Basic variable x y s1 s2 s3 RHS 1 -1 100 -2 400 3 600 I 0.4 0.2 880 Third constraint row x pivot row
27
PIVOT 3 Optimal solution x y s1 s2 s3 RHS
Basic variable x y s1 s2 s3 RHS 1 -1 100 -2 400 3 600 I 0.4 0.2 880 I = 880, x = 400, y = 600, s1 = 0, s2 = 100, s3 = 0
28
LINEAR PROGRAMMING Example Maximise I = x + 0.8y
subject to x + y 1000 2x + y 1500 3x + 2y 2400 Optimal solution after pivot 3: I = 880 at (400, 600)
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.