Presentation is loading. Please wait.

Presentation is loading. Please wait.

Authors: Chien-Wu Tsai and Ja-Ling Wu

Similar presentations


Presentation on theme: "Authors: Chien-Wu Tsai and Ja-Ling Wu"— Presentation transcript:

1 On Constructing the Huffman-Code-Based Reversible Variable-Length Codes
Authors: Chien-Wu Tsai and Ja-Ling Wu Source: IEEE Transactions on Communications, Vol. 49, No. 9, September 2001, pp Presenter: Iuon-Chang Lin Date: 2001/9/27

2 Motivation Due to the variable-length codes (VLCs), even one single bit mismatch will cause a serious problem resulting from the propagation of errors. The main purpose of the reversible variable length codes (RVLCs) is to provide the capability of forward and backward decoding.

3 Symmetrical VS Asymmetrical RVLC
Symbol Probability Huffman Code Sym. RVLC Asym. RVLC A B C D E 0.33 0.30 0.18 0.10 0.09 00 01 11 100 101 00 11 010 101 0110 00 01 11 1010 10010 Symmetrical: require only one code table Asymmetrical: offer better efficiently than symmetrical because a more flexible bit assignment is allowed, although two types of coding table are necessary

4 The Symmetrical RVLCs Constructions
0, 1 00, 11 000, 010, 101, 111 0000, 0110, 1001, 1111 00000, 01010, 00100, 01110, 10101, 11011, 10001, 11111 Level 1 Level 3 Level 4 Level 5 Level 6 Level 2 000000, , , , , , ,

5 Simple Symmetric Coding
K L I J H G F E D C B A Huffman Code Simple Symm Code Symbol Prob. A B C D E F G H I J K L 0.32 0.18 0.08 0.07 0.06 0.05 0.04 11 101 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 00 11 010 101 0110 1001 01110 10001 011110 100001 0, 1 00, 11 000, 010, 101, 111 0000, 0110, 1001, 1111 00000, 01010, 00100, 01110, 10101, 11011, 10001, 11111 Level 1 Level 3 Level 4 Level 5 Level 6 Level 2 000000, , , , , , , × × × × × × × × × × × × × × × ×

6 Symmetric RVLC Algorithm

7 Symmetrical RVLC × × × × × × × × × × Huffman Code Symm. RVLC A B C D E
K L I J H G F E D C B A Huffman Code Symbol Prob. Symm. RVLC A B C D E F G H I J K L 0.32 0.18 0.08 0.07 0.06 0.05 0.04 11 101 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 11 010 0000 0110 1001 10101 01110 10001 00100 011110 100001 001100 0, 1 00, 11 000, 010, 101, 111 0000, 0110, 1001, 1111 00000, 01010, 00100, 01110, 10101, 11011, 10001, 11111 Level 1 Level 3 Level 4 Level 5 Level 6 Level 2 000000, , , , , , , × × × × × × × × × ×

8 The Maximum Length of Symmetrical Bit Suffixes
0000000 level 3 level 4 01001010 level 3level 5 01110 level 5level 9 10101 level 5level 7

9 Asymmetrical RVLC Algorithm

10 Asymmetrical RVLC × × × × × × × × × × × × × × × × × × × × × × × × × ×
Huffman Code 0, 1 Symbol Prob. Asymm. RVLC Level 1 Level 2 00, 01, 10, 11 A B C D E F G H I J K L 0.32 0.18 0.08 0.07 0.06 0.05 0.04 11 101 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 11 000 0010 0100 0101 0110 1001 1010 01110 10001 001100 011110 × × × Level 3 000, 001, 010, 011, 100, 101, 110, 111 × × × Level 4 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 × × × × × × × × × × × 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111, , 10001, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111 Level 5 × × × × × × × × × × × × × × × × × × × × × × × × × ×

11 The Minimum Repetition Gap and No. of Available Candidate Codewords
Given a codeword c=010, B=010X1X2X3 X=101010101; B1=B3=B5=0; B2=B5=1; Gap=2. X =010010010; B1=B4=0; B2=B5=1; B3=B6=2; Gap=3. MRG=min{2,3}=2.

12 Symmetrical and Asymmetrical RVLCs for the English Alphabet

13 Encoding Symmetrical RVLC for English Alphabet
Step 1 Step 2 Step 3 Initialize avail(3)=4 nrev(3)<avail(3) avail(4)=4 nrev(4)>avail(4) nrev(3)=n(3)=2 nrev(4)=n(4)=7 nrev(5)=n(5)=7 nrev(6)=n(6)=5 nrev(7)=n(7)=1 nrev(8)=n(8)=1 nrev(9)=n(9)=1 nrev(10)=n(10)=2 Select all Select 010, 101 nrev(5)= nrev(5) + nrev(4)-avail(4)=10 nrev(4)=avail(4)=4 nrev(i): bit length vector of symm. RVLC; n(i): bit length vector of VLC avail(i): the number of candidate codeword at level i

14 Encoding Symmetrical RVLC for English Alphabet (cont.)
Step 4 Step 5 Avail(5)=4 Avail(6)=4 nrev(5)>avail(5) 10>4 Select all nrev(6)>avail(6) 11>4 Select all × × × × × × × × nrev(6)= nrev(6) + nrev(5)-avail(5)=11 nrev(5)=avail(5)=4 nrev(7)= nrev(7) + nrev(6)-avail(6)=8 nrev(6)=avail(6)=4

15 Encoding Asymmetrical RVLC
Step 1 Step 2 Step 3 Initialize avail(3)=8 nrev(3)<avail(3) 2<8 avail(4)=10 nrev(4)<avail(4) nrev(3)=n(3)=2 nrev(4)=n(4)=7 nrev(5)=n(5)=7 nrev(6)=n(6)=5 nrev(7)=n(7)=1 nrev(8)=n(8)=1 nrev(9)=n(9)=1 nrev(10)=n(10)=2 Select all Select 000, 111 nrev(i): bit length vector of symm. RVLC; n(i): bit length vector of VLC avail(i): the number of candidate codeword at level i

16 Encoding Asymmetrical RVLC (cont.)
Step 4 Step 5 Avail(5)=4 Avail(6)=3 nrev(5)>avail(5) 10>4 Select all nrev(6)>avail(6) 11>3 Select all nrev(6)= nrev(6) + nrev(5)-avail(5)=11 nrev(5)=avail(5)=4 nrev(7)= nrev(7) + nrev(6)-avail(6)=9 nrev(6)=avail(6)=3

17 Conclusion The authors propose two proper and efficient codeword selection policies for symmetrical and asymmetrical classes. It would let the number of available candidate as many as possible and coding overhead is as small as possible. The polices are not the optimal one.


Download ppt "Authors: Chien-Wu Tsai and Ja-Ling Wu"

Similar presentations


Ads by Google