Presentation is loading. Please wait.

Presentation is loading. Please wait.

Outline Eigenvalue Trace Rank Determinant.

Similar presentations


Presentation on theme: "Outline Eigenvalue Trace Rank Determinant."— Presentation transcript:

1 Outline Eigenvalue Trace Rank Determinant

2 Eigenvalue of A Matrix The definition of eigenvalues
Important properties on the eigenvalues eig(AB) = eig(BA) [A]n*n at most n different eigenvalues rank(A) = r, then A at most r nonzero eigenvalues eig(A-1) = 1/eig(A) eig(I + cA) = 1 + c*eig(A), eig(A - cI) = eig(A)-c

3 Eigenvalue of A Matrix eig(AB) = eig(BA)
rank(A) = r, then A at most r nonzero eigenvalues The eigenvectors corresponding to different eigenvalues for linearly independent eig(A-1) = 1/eig(A) eig(I + cA) = 1 + c*eig(A), eig(A - cI) = eig(A)-c

4 Eigenvalue of A Matrix eig(AB) = eig(BA)
rank(A) = r, then A at most r different nonzero eigenvalues The eigenvectors corresponding to different eigenvalues for linearly independent

5 Positiveness and Negativeness
Hermitian Matrix Semi-positiveness and eigenvalues Positive definite: all positive eigenvalues Positive semidefinite: all non-negative eigenvalues Negative definite: all negative eigenvalues Negative semidefinite: all non-positive eigenvalues

6 Trace of A Matrix The summation of diagonal elements
Important properties on the trace tr(AB) = tr(BA), very important tr(A) = summation of eigenvalues Eigenvalue polynomial: tr(A2) ≤ tr(ATA)

7 Rank of A Matrix Maximum number of linearly independent rows/columns
Important properties on the rank rank(A+B) ≤ rank([A B]) ≤ rank(A) + rank(B) [A]m*n, [B]n*p: rank(A) + rank(B) - n ≤ rank(AB) rank(A) = rank(AAH) = rank(AHA) [A]m*m, rank(A) = m ↔ det(A) ≠ 0 ↔ A non-singular

8 Rank of A Matrix rank(A+B) ≤ rank([A B]) ≤ rank(A) + rank(B)
A+B = [A B]*[I I]T [A B] has linearly dependent rows for any rank(A) + rank(B) columns [A]m*n, [B]n*p: rank(A) + rank(B) - n ≤ rank(AB) Consider the orthogonal space of A, denoted as A┴ rank(B) = rank([A A┴]B) ≤ rank(AB) + rank(A┴B) ≤ rank(AB) + rank(A┴) = rank(AB) + n – rank(A)

9 Rank of A Matrix rank(A) = rank(AAH) = rank(AHA)
It is easy to prove that rank(A) ≥ rank(AAH); On the other hand, we have the following rank(A) = rank([AH (A┴)H]A) ≤ rank(AHA) + rank(A┴HA) = rank(AHA) + 0 = rank(AHA)

10 Determinant of A Matrix
Determinant and Volume |det(A)| = volume of parallelepiped spanned by columns of A; Hardmard Determinant Bound V = [V1 V2 … VN], |det(V)| ≤ ∏||Vn||2 If A is not full rank, then volume is zero; and det(A) = 0

11 Determinant of A Matrix
Important properties on the determinant Hermitian matrix A: det(A) real det(A) = det(AH) = conj(det(AT))=conj(det(A)) det(A-1) = det(A)-1 det(AB) = det(A)det(B)

12 Determinant of A Matrix
Important properties on the determinant Hermitian matrix A: det(A) real |det(AHB)|2 ≤ det(AHA)det(BHB) Positive definition A: det(A) > 0 Positive semi-definite A: det(A) ≥ 0 A and B positive semi-definite: det(A+B) ≥ det(A) + det(B) A positive definite, B positive semi-definite: det(A+B) ≥ det(A)

13 Determinant of A Matrix
|det(AHB)|2 ≤ det(AHA)det(BHB) det(A) = volume of parallelepiped spanned by columns of A; V = [V1 V2 … VN], |det(V)| ≤ ∏||Vn||2 ≤ 1 SVD of A and B, the final step is to prove that the determinant of a submatrix of unitary matrix is less than or equal to one;

14 Determinant of A Matrix
A and B positive semi-definite: det(A+B) ≥ det(A) + det(B) We can prove: det(A+I) ≥ det(A) + 1, via eigenvalue decomposition of A det(B-1/2AB-1/2+I) ≥ det(B-1/2AB-1/2) + 1; which is equivalent to det(A+I) ≥ det(A) + 1; Then perform EVD for A, we need to prove that the above is satisfied for diagonal matrix A

15 Determinant of A Matrix
A positive definite, B positive semi-definite : det(A+B) ≥ det(A) Proof from information theory. Consider Gaussian random variables X and Y, with covariance matrix A and B. We have the differential entropy h(X+Y) ≥ h(X) = 1/2log2{2πedet(A)} Note that we have h(X+Y) ≤ 1/2log2{2πedet(A+B)} Thus we have 1/2log2{2πedet(A+B)} ≥ 1/2log2{2πedet(A)}


Download ppt "Outline Eigenvalue Trace Rank Determinant."

Similar presentations


Ads by Google