Presentation is loading. Please wait.

Presentation is loading. Please wait.

Osaka Institute of Technology

Similar presentations


Presentation on theme: "Osaka Institute of Technology"— Presentation transcript:

1 Osaka Institute of Technology
Role of tensor force in light unstable nuclei with tensor-optimized shell model Takayuki MYO  明 孝之 Osaka Institute of Technology 大阪工業大学 In collaboration with Atsushi UMEYA (Nippon Inst. Tech.) Hiroshi TOKI (RCNP) Kiyomi IKEDA (RIKEN) RIBF ULIC-Symposium "Perspective in Isospin Physics" - Role of non-central interactions in structure and dynamics of unstable nuclei RIKEN, 1

2 Outline Role of Vtensor in the nuclear structure by describing strong tensor correlation explicitly. Tensor Optimized Shell Model (TOSM) to describe tensor correlation. Unitary Correlation Operator Method (UCOM) to describe short-range correlation. TOSM+UCOM to He & Li isotopes with Vbare TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) TM, A. Umeya, H. Toki, K. Ikeda PRC, in press

3 Deuteron properties & tensor force
Energy -2.24 MeV Kinetic 19.88 Central -4.46 Tensor -16.64 LS -1.02 P(L=2) 5.77% Radius 1.96 fm S D AV8’ Vcentral Rm(s)=2.00 fm Rm(d)=1.22 fm r d-wave is “spatially compact” (high momentum) Vtensor

4 Tensor-optimized shell model (TOSM)
TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257 Configuration mixing within 2p2h excitations with high-L orbits.   TM et al., PTP113(2005) TM et al., PTP117(2007) Length parameters such as b0s, b0p , … are optimized independently, or superposed by many Gaussian bases. Spatial shrinkage of D-wave as seen in deuteron HF by Sugimoto et al,(NPA740) / Akaishi (NPA738) RMF by Ogawa et al.(PRC73), AMD by Dote et al.(PTP115) Satisfy few-body results with Minnesota central force (4,6He) 4He 4 4

5 Hamiltonian and variational equations in TOSM
(0p0h+1p1h+2p2h) Particle state : Gaussian expansion for each orbit Gaussian basis function Hiyama, Kino, Kamimura PPNP51(2003)223 c.m. excitation is excluded by Lawson’s method TOSM code : p-shell region

6 Configurations in TOSM
Gaussian expansion particle states C0 C1 C2 C3 nlj proton neutron hole states (harmonic oscillator basis) Application to Hypernuclei by A. Umeya to investigate N-N coupling

7 Unitary Correlation Operator Method
(short-range part) TOSM short-range correlator Bare Hamiltonian Shift operator depending on the relative distance Amount of shift, variationally determined. 2-body cluster expansion 7 7 H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

8 Short-range correlator : C (or Cr)
[fm] Shift function Transformed VNN (AV8’) 1E s(r) Originalr2 3GeV repulsion 3E Vc 1O C 3O We further introduce partial-wave dependence in “s(r)” of UCOM S-wave UCOM 8

9 4He in TOSM + short-range UCOM
(exact) Kamada et al. PRC64 (Jacobi) TM, H. Toki, K. Ikeda PTP121(2009)511 variational calculation VLS E Gaussian expansion with 9 Gaussians VC VT good convergence 9

10 Tensor Optimized Few-body Model (TOFM)
Same as TOSM concept No use of UCOM Correlated Gaussian basis + Global vector in SVM K 102.35 95.37 4He with AV8’ S-wave (L=0) D-wave (L=2) Y2 -4.05 -4.71 LS -24.05 -25.92 E VC -54.58 -55.22 VT -60.79 -68.32 Y2 Y2 TOFM SVM Horii, Toki, Myo, Ikeda PTP127(2012)1019 10

11 5-8He with TOSM+UCOM Excitation energies in MeV Bound state app.
TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) Excitation energies in MeV Bound state app. No continuum No VNNN Excitation energy spectra are reproduced well

12 5-9Li with TOSM+UCOM Excitation energies in MeV
TM, A. Umeya, H. Toki, K. Ikeda PRC, in press Excitation energies in MeV Excitation energy spectra are reproduced well

13 5-9Li with TOSM Minnesota force (Central+LS)
Excitation energies in MeV Too large excitation energy

14 Matter radius of He & Li isotopes
Expt TOSM with AV8’ Halo Skin A. Dobrovolsky, NPA 766(2006)1 I. Tanihata et al., PLB289(‘92) G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05) P. Mueller et al., PRL99(2007)252501 14 14

15 Configurations of 4He with AV8’
TM, H. Toki, K. Ikeda PTP121(2009)511 (0s1/2)4 83.0 % (0s1/2)−2JT(p1/2)2JT JT=10 2.6 JT=01 0.1 (0s1/2)−210(1s1/2)(d3/2)10 2.3 (0s1/2)−210(p3/2)(f5/2)10 1.9 Radius [fm] 1.54 deuteron correlation with (J,T)=(1,0) Cf. R.Schiavilla et al. (VMC) PRL98(2007)132501 R. Subedi et al. (JLab) Science320(2008)1476 12C(e,e’pN) S.C.Simpson, J.A.Tostevin PRC83(2011)014605 4He contains p1/2 of “pn-pair” 12C 10B+pn – Same feature in 5He-8He ground state 15

16 Selectivity of the tensor coupling in 4He
VT L=2 s1 s2 s3 s4 s1 s2 s3 s4 1+(pn) 1+(pn) VT Selectivity of tensor operator s1 s2 s3 s4 L=2 DL=2, DS=2 16

17 Relativistic chiral mean field model
Ogawa, Toki (RCNP) 2011,NPA 16O a Vp / A • with 2p2h excitations. • Difference between  12C and 16O is “3 MeV / A” 12C • It comes from low pion-spin states (J=0,1,2) which suffers Pauli blocking. 16O 16O P1/2 12C a P3/2 4He Vp(Jp)/ A 12C S1/2

18 4-8He with TOSM+UCOM Excitation energies in MeV No VNNN No continuum
Excitation energy spectra are reproduced well

19 Tensor correlation in 6He
val.-n Ground state Excited state halo state (0+) Tensor correlation is suppressed due to Pauli-Blocking TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681 19 19

20 6He : Hamiltonian component in TOSM
Difference from 4He in MeV bhole=1.5 fm 6He 0+1 0+2 n2 config (p3/2)2 (p1/2)2 DKin. 53.0 34.3 DCentral 27.8 14.1 DTensor 12.0 0.2 DLS 4.0 2.1 =18.4 MeV (hole) LS splitting energy in 6He same trend in 5-8He Terasawa, Arima PTP23 (’60) Nagata, Sasakawa, Sawada, Tamagaki, PTP22(’59) Myo, Kato, Ikeda, PTP113 (’05)

21 Configurations of “pn in 6Ligs” and VNN
AV8’ Minnesota (0p1/2)(0p3/2) 43% 29% (0p3/2)2 38% 56% LS jj S=0 S=1 (0p1/2)(0p3/2) 11% 89% (0p3/2)2 56% 44% Enhancement of S=1 component with AV8’ (Vtensor) Indication of the a+d clustering 21 (1+)

22 Ground states : p-shell configurations
Weight 6Li (1+) (0p1/2)(0p3/2) 43% 7Li (3/2-) (0p3/2)3 48% 8Li (2+) (0p3/2)4 41% 9Li (3/2-) (0p3/2)5 46% LS jj jj jj Tensor-type excitations 6Li … LS coupling 7-9Li … jj coupling 0s → 0p1/2, 0p3/2 → sd & higher shells 22

23 Summary TOSM+UCOM using Vbare.
Reproduce the excitation energy spectra. 4He contains “pn-pair of p1/2” than p3/2. He isotopes with p3/2 has large contributions of Vtensor & Kinetic energy. 6Li : S=1 component, LS coupling. 7-9Li : jj coupling. Foundation to the analyses of 10Li & 11Li. 23 23

24 4He in UCOM (Afnan-Tang, Vcentral only)
24 24

25 4-8He with TOSM Minnesota force (Central+LS)
Difference from 4He in MeV No VNNN No continuum

26 Configurations of “nn in 6Hegs” and VNN
AV8’ Minnesota (0p3/2)2 72% 81% (0p1/2)2 10% 4% jj S=0 S=1 (0p3/2)2 33% 66% (0p1/2)2 26


Download ppt "Osaka Institute of Technology"

Similar presentations


Ads by Google