Presentation is loading. Please wait.

Presentation is loading. Please wait.

PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS

Similar presentations


Presentation on theme: "PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS"— Presentation transcript:

1 PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS
Gary Steigman Ohio State University SUSY 06, Irvine, CA, June 12 – 17, 2006

2 Primordial Nucleosynthesis Relic Photons (CBR) are free
~ 100 s after the Big Bang Primordial Nucleosynthesis ~ 0.1 s after the Big Bang Neutrinos Decouple ~ 380 kyr after the Big Bang Relic Photons (CBR) are free

3 BBN & The CBR Provide Complementary Probes Of The Early Universe
Do the predictions and observations of the baryon density (10  (nB/nγ)0 = Bh2 ) and the expansion rate (H) of the Universe agree at 20 minutes (BBN) and at kyr (CBR) ?

4 D, 3He, 7Li are potential BARYOMETERS
BBN – Predicted Primordial Abundances BBN Abundances of D, 3He, 7Li are RATE (Density) LIMITED 7Li 7Be D, 3He, 7Li are potential BARYOMETERS

5 DEUTERIUM --- The Baryometer Of Choice
As the Universe evolves, D is only DESTROYED  * Anywhere, Anytime : (D/H) t  (D/H) P * For Z << Z : (D/H) t  (D/H) P (Deuterium Plateau) (D/H) P is sensitive to the baryon density (    ) H  and D  are seen in Absorption, BUT … * H  and D  spectra are identical  H  Interlopers? * Unresolved velocity structure  Errors in N(H ) ?

6 D/H vs. Metallicity Deuterium Plateau ? Real variations,
systematic differences, statistical uncertainties ? LLS Deuterium Plateau ? DLA Low – Z / High – z QSOALS

7 For Primordial D/H adopt dispersion around the mean
D/H vs. Metallicity For Primordial D/H adopt the mean and the dispersion around the mean 105(D/H)P = 2.6 ± 0.4

8 (D/H)P =  0.4 x 10 SBBN  10 =  0.6 BBN

9 CBR

10   CBR Temperature Anisotropy Spectrum (2003)
(T2 vs. ) Depends On The Baryon Density   Barger et al. (2003) B h2 = , , CBR (WMAP) constrains B h2 The CBR is an early - Universe Baryometer

11 CBR (WMAP – ALONE)  10 =  0.3 CBR

12 D/H vs. Metallicity The CBR is a good Deuteronometer ! SBBN/WMAP
105(D/H)P = 2.6 ± 0.2

13 BBN (20 min) & CBR (380 kyr) AGREE !

14  S (or N) is constrained by YP
The Expansion Rate (H) Provides A Probe Of Non-Standard Physics 4He production is n/p Limited  YP is sensitive to the EXPANSION RATE ( H  1/2 ) S  H / H  (/)1/2  (1 + 7N / 43)1/2 where    + N  and N  3 + N  S (or N) is constrained by YP

15 4He is an early – Universe Chronometer
Y vs. D / H N = 2, 3, 4 (S = 0.91, 1.00, 1.08) Y  N  (S – 1)

16 D & 4He Isoabundance Contours
YP & yD  105 (D/H) 4.0 3.0 2.0 0.25 0.24 0.23 D & 4He Isoabundance Contours Kneller & Steigman (2004)

17 "2σ" range for YP : 0.228  0.248 (OSW) As O/H  0, Y  0
SBBN Prediction "2σ" range for YP :  (OSW)

18 BBN (D, 4He)  For N ≈ 2.5 ± 0.3 YP & yD  105 (D/H) 4.0 3.0 2.0 0.25
0.24 0.23

19  A Non-Standard BBN Example (Neff < 3) Late Decay of a
Massive Particle Kawasaki, Kohri & Sugiyama & Low Reheat Temp. (TR  MeV) Neff < 3 Relic Neutrinos Not Fully (Re) Populated

20 BBN and Primordial (Pop ) Lithium ? Li/H vs. Fe/H
Li too low ? SBBN + CBR log (Li)  2.6 – 2.7 “Spite” Plateau (?) log (Li)  2.2

21  log (Li)  2.6  0.1 Or, Late Decay of the NLSP ? Even for N  3
yLi  1010 (Li/H) 4.2 YOSW + D  H  Li  H   0.8 x 10 10  log (Li)  2.6  0.1 Li depleted / diluted in Pop  stars ? Or, Late Decay of the NLSP ?

22   CBR Temperature Anisotropy Spectrum (2003)
Depends on the Radiation Density R (S or N)   N = 1, 2.75, 5, 7 Barger et al. (2003) CBR (WMAP) constrains N (S) The CBR is an early - Universe Chronometer

23 BBN (D & 4He) + CBR (WMAP – 2003)
BBN & CBR Consistent ! CBR BBN Barger et al. (2003) Barger et al. (2003)

24 Joint BBN (D & 4He) & CBR (WMAP) Fit
Barger et al. (2003) Barger et al. (2003)

25 Baryon Density Determinations: Consistent ?
Late - Decaying NLSP ? ? N < 3 ? Observational Uncertainties Or New Physics?

26 N Determinations (95 % CL Ranges)
(v.1) WMAP 2006 WMAP 2003

27 Seljak et al. Revised BUT ! N > 3 ! (v.2)

28 VERY PRELIMINARY ! STAY TUNED ! N & Mh2 Are Correlated
V. Simha & G. S. N & Mh2 Are Correlated 2 ≤ N ≤ 8 ? VERY PRELIMINARY ! STAY TUNED ! The CMB Is A Relatively Poor Chronometer

29 BBN (~ 20 min.) And The CBR (~ 400 kyr)
CONCLUSIONS (Pre – WMAP 2006) BBN (~ 20 min.) And The CBR (~ 400 kyr) Are CONSISTENT ! 1.9 ≤ N ≤ allowed @ ~ 95% ( Also : 10 = ± 0.2 )


Download ppt "PROBING THE UNIVERSE AT 20 MINUTES AND 400 THOUSAND YEARS"

Similar presentations


Ads by Google