Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 3-2 Discrete Random Variables

Similar presentations


Presentation on theme: "Chapter 3-2 Discrete Random Variables"— Presentation transcript:

1 Chapter 3-2 Discrete Random Variables
主講人:虞台文

2 Content Functions of a Single Discrete Random Variable
Discrete Random Vectors Independent of Random Variables Multinomial Distributions Sums of Independent Variables  Generating Functions Functions of Multiple Random Variables

3 Chapter 3-2 Discrete Random Variables
Functions of a Single Discrete Random Variable

4 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數

5 這傢伙上車後我可以從他口袋掏多少錢(Y)?
隨機變數之函式亦為隨機變數。 Y = g(X) 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?

6 這傢伙上車後我可以從他口袋掏多少錢(Y)?
Y = g(X) 若pX(x)已知, pY(y)=? 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?

7 The Problem Y = g(X) and pX(x) is available.

8 這瓶十元 Example 17 這瓶只要五元 福氣啦!!!

9 這瓶十元 Example 17 這瓶只要五元 福氣啦!!!

10 這瓶十元 Example 17 這瓶只要五元 福氣啦!!!

11 Example 17

12 Example 18 n=10, p=0.2.

13 Example 18 n=10, p=0.2.

14 Example 18 n=10, p=0.2.

15 Pay 100$, #bottles (X3) obtained?
Example 18 n=10, p=0.2.

16 Example 18 n=10, p=0.2. Pay 100$, #bottles (X3) obtained?
Let Y (X3) denote #lucky bottles obtained.

17 Chapter 3-2 Discrete Random Variables
Discrete Random Vectors

18 Definition  Random Vectors
A discrete r-dimensional random vector X is a function X:   Rr with a finite or countable infinite image of {x1, x2, …}.

19 Example 19

20 1 Example 19

21 2 Example 19

22 pX(x) = P(X1 = x1, X2 = x2, … , Xr = xr),
Definition  Joint Pmf Let random vector X = (X1, X2, …, Xr). The joint pmf (jpmf) for X is defined as pX(x) = P(X1 = x1, X2 = x2, … , Xr = xr), where x = (x1, x2, … , xr).

23 Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y

24 Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y. X Y

25 Properties of Jpmf's p(x)  0, x  Rr;
{x | p(x)  0} is a finite or countably infinite subset of Rr;

26 Definition  Marginal Probability Mass Functions
Let X = (X1, …, Xi , …, Xr) be an r-dimensional random vectors. The ith marginal probability mass function defined by

27 Example 21 Find pX(x) and pY (y) of Example 20. X Y

28 Example 21 Find pX(x) and pY (y) of Example 20. X Y

29 Example 22 X = # 4 Y = # pX,Y(x, y) = ? pX (x) = ? pY (y) = ?

30 Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)

31 Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)

32 Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)

33 Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)

34 Example 22 X = # 4 Y = # pX,Y(x, y) pX,Y(x, y) = ?
pX (x) = ? pY (y) = ? p(X < 3)= ? p(X + Y < 4)= ? 4 Example 22 pX,Y(x, y)

35 Chapter 3-2 Discrete Random Variables
Independent Random Variables

36 Definition Let X1, X2, …, Xr be r discrete random variables having densities , respectively. These random variables are said to be mutually independent if their jpdf p(x1, x2, …, xr) satisfies

37 Example 23 Tossing two dice, let X, Y represent the face values of the 1st and 2nd dice, respectively. 1. pX,Y (x, y) = ?. 2. Are X, Y independent?

38 Example 23

39 Fact ? ? ?

40 Fact

41 Fact

42 Example 24 Consider Example 23. Find P(X  2, Y  4).

43 Example 24

44 Example 24

45 Example 24 Z1有何意義?

46 Example 24

47 Example 24

48 Example 24

49 Example 24 p’ p’

50 Example 24

51 Example 24 Fact: cdf pmf

52 Example 24

53 Example 24

54 Example 24

55 Chapter 3-2 Discrete Random Variables
Multinomial Distributions

56 Generalized Bernoulli Trials
A sequence of n independent trials. Each trial has r distinct outcomes with probabilities p1, p2, …, pr such that

57 Multinomial Distributions
Define X=(X1, X2, …, Xr) st Xi is the number of trials that resulted in the ith outcome. satisfies

58 Multinomial Distributions
Define X=(X1, X2, …, Xr) st Xi is the number of trials that resulted in the ith outcome. satisfies

59 Example 26 If a pair of dice are tossed 6 times, what is the probability of obtaining a total of 7 or 11 twice, a matching pair one, and any other combination 3 times? Three outcomes: 7 or 11 match others X1  #7 or 11; X2  #matches; X3  #others.

60 Chapter 3-2 Discrete Random Variables
Sums of Independent Variables  Generating Functions

61 The Sum of Independent Random Variables

62 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z).

63 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n} n n z  n z z  n z

64 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n}

65 Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Case 1: z{0, 1, …, n} Case 2: z{n+1, n+2, …, 2n}

66 Probability Generating Functions
機率母函數 Probability Generating Functions Probabilities Probabilities

67 Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as:

68 Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as: x 2 1

69 Probability Generating Functions
pgf Probability Generating Functions Let X be a nonnegative integer-valued random variable. Its probability generating function GX(t) is defined as: x 2 1

70 Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).

71 Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).

72 Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).

73 Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p).

74 Probability Generating Functions
pgf Probability Generating Functions Compute the pgf’s for the following distributions: 1. X ~ B(n, p); 2. Y ~ P(); 3. Z ~ G(p); 4. U ~ NB(r, p). Exercise

75 Important Generating Functions

76 Theorem 2  Sums of Independent Random Variables
Let X, Y be two independent, nonnegative integer-valued random variables. Then,

77 Theorem 2  Sums of Independent Random Variables
Pf) Let Z=X+Y.

78 Theorem 2  Sums of Independent Random Variables
Fact: and . . .

79 Example 29 Use pgf to recompute Example 27.
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Example 29 Use pgf to recompute Example 27.

80 Example 29 Use pgf to recompute Example 27.
Example 27 Let X, Y be two independent random variables each uniformly distributed over 0, 1, 2, …, n. Find P(X+Y = z). Example 29 Use pgf to recompute Example 27.

81 Theorem 3

82 Theorem 3 表何意義?

83 Theorem 3

84 Theorem 3 表何意義?

85 Theorem 3

86 Theorem 3 表何意義?

87 Theorem 3

88 Theorem 3 表何意義?

89 Theorem 3

90 Theorem 3 表何意義?

91 Theorem 3

92 熟記!!!請靈活的將它們用於解題 Theorem 3

93 Chapter 3-2 Discrete Random Variables
Functions of Multiple Random Variables

94 Functions of Multiple Random Variables
Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=?

95 Functions of Multiple Random Variables
Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=? Example: pX,Y(x, y)  已知 pU,V(u, v) = ? X $/month Y $/month

96 Functions of Multiple Random Variables
1-1 implies invertible. Functions of Multiple Random Variables Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=? Example: pX,Y(x, y)  已知 pU,V(u, v) = ?

97 Functions of Multiple Random Variables
1-1 implies invertible. Functions of Multiple Random Variables Let X, Y be two random variables with jpmf pX,Y(x, y). 1-1 Suppose that pU,V(u, v)=?

98 Example 30 Let X~B(n, p1), Y~B(m, p2) be two independent random variables. U = X + Y V = X  Y Let Find pU,V(u, v).

99 Example 30 Let X~B(n, p1), Y~B(m, p2) be two independent random variables. U = X + Y V = X  Y Let Find pU,V(u, v). and


Download ppt "Chapter 3-2 Discrete Random Variables"

Similar presentations


Ads by Google