Download presentation

Presentation is loading. Please wait.

Published byKailyn Figures Modified over 9 years ago

1
0.5 – Permutations & Combinations

2
Permutation – all possible arrangements of objects in which the order of the objects is taken in to consideration.

3
Permutation Formula – The number of permutations of n objects taken r at a time is the quotient of n! and (n – r)!

4
Permutation – all possible arrangements of objects in which the order of the objects is taken in to consideration. Permutation Formula – The number of permutations of n objects taken r at a time is the quotient of n! and (n – r)! P(n,r) = n! (n – r)!

5
Permutation – all possible arrangements of objects in which the order of the objects is taken in to consideration. Permutation Formula – The number of permutations of n objects taken r at a time is the quotient of n! and (n – r)! P(n,r) = n! (n – r)! Combinations – a selection of objects in which order is not considered.

6
Permutation – all possible arrangements of objects in which the order of the objects is taken in to consideration. Permutation Formula – The number of permutations of n objects taken r at a time is the quotient of n! and (n – r)! P(n,r) = n! (n – r)! Combinations – a selection of objects in which order is not considered. Combination Formula – The number of combinations of n objects taken r at a time is the quotient of n! and (n – r)!r!

7
Permutation – all possible arrangements of objects in which the order of the objects is taken in to consideration. Permutation Formula – The number of permutations of n objects taken r at a time is the quotient of n! and (n – r)! P(n,r) = n! (n – r)! Combinations – a selection of objects in which order is not considered. Combination Formula – The number of combinations of n objects taken r at a time is the quotient of n! and (n – r)!r! C(n,r) = n! (n – r)!r!

8
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded?

9
P(n,r) = n! (n – r)!

10
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)!

11
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)! P(10,3) = 10! 7!

12
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)! P(10,3) = 10! 7! P(10,3) = 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1

13
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)! P(10,3) = 10! 7! P(10,3) = 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1

14
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)! P(10,3) = 10! 7! P(10,3) = 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1 P(10,3) = 10 9 8

15
Ex. 1 There are 10 finalist in an Olympic competition. How many different ways can gold, silver, & bronze medals be awarded? P(n,r) = n! (n – r)! P(10,3) = 10! (10 – 3)! P(10,3) = 10! 7! P(10,3) = 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1 P(10,3) = 10 9 8 = 720

16
Ex. 2 Horatio works part-time at a local department store. His manager asked him to choose for display 5 different styles of shirts from the wall of the store that has 8 shirts on it to put in a display. How many ways can he choose the shirts?

17
C(n,r) = n! (n – r)!r!

18
Ex. 2 Horatio works part-time at a local department store. His manager asked him to choose for display 5 different styles of shirts from the wall of the store that has 8 shirts on it to put in a display. How many ways can he choose the shirts? C(n,r) = n! (n – r)!r! C(8,5) = 8! (8 – 5)!5!

19
Ex. 2 Horatio works part-time at a local department store. His manager asked him to choose for display 5 different styles of shirts from the wall of the store that has 8 shirts on it to put in a display. How many ways can he choose the shirts? C(n,r) = n! (n – r)!r! C(8,5) = 8! (8 – 5)!5! C(8,5) = 8 7 6 5 4 3 2 1 3 2 1 5 4 3 2 1

20
Ex. 2 Horatio works part-time at a local department store. His manager asked him to choose for display 5 different styles of shirts from the wall of the store that has 8 shirts on it to put in a display. How many ways can he choose the shirts? C(n,r) = n! (n – r)!r! C(8,5) = 8! (8 – 5)!5! C(8,5) = 8 7 6 5 4 3 2 1 3 2 1 5 4 3 2 1

21
Ex. 2 Horatio works part-time at a local department store. His manager asked him to choose for display 5 different styles of shirts from the wall of the store that has 8 shirts on it to put in a display. How many ways can he choose the shirts? C(n,r) = n! (n – r)!r! C(8,5) = 8! (8 – 5)!5! C(8,5) = 8 7 6 5 4 3 2 1 = 56 3 2 1 5 4 3 2 1

22
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q!

23
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged?

24
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged? 11 total letters, 4 Is, 4 Ss, and 2 Ps.

25
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged? 11 total letters, 4 Is, 4 Ss, and 2 Ps. n!_ p!q!

26
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged? 11 total letters, 4 Is, 4 Ss, and 2 Ps. n!_ p!q! 11! _ 4!4!2!

27
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged? 11 total letters, 4 Is, 4 Ss, and 2 Ps. n!_ p!q! 11! _ 4!4!2! 11 10 9 8 7 6 5 4 3 2 1 4 3 2 1 4 3 2 1 3 2 1

28
Permutations with Repetition The number of permutations of n objects of which p are alike and q are alike is n!_ p!q! Ex. 3 How many different ways can the letters in the word MISSISSIPPI be arranged? 11 total letters, 4 Is, 4 Ss, and 2 Ps. n!_ p!q! 11! _ 4!4!2! 11 10 9 8 7 6 5 4 3 2 1 4 3 2 1 4 3 2 1 2 1 3 2 5

29
11 5 3 7 5 4 3 2

30
11 5 3 7 5 4 3 = 34,650 2

Similar presentations

© 2024 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google