Download presentation
Presentation is loading. Please wait.
Published byLeony Yuwono Modified over 6 years ago
1
2000 Neutron Distribution observed with Electron Scattering
Mar , 2019, ELPH Neutron Distribution observed with Electron Scattering ー through electromagnetic interaction Haruki Kurasawa , Chiba Univ., and Toshio Suzuki , ELPH , Tohoku Univ. 2000
2
Purpose ( In addition to Change of the Proton Distribution due to Excess Neutrons ) The possibility to observe neutron distribution in electron scattering and its implication for the detailed study of the nuclear surface structure Key Points 1. Charge distribution of neutrons is not observable, at q = 0 2 and in < r > c , mean square charge radius of nuclei, but is observable, at q = 0 4 and in < r > c , ・・・・・・・・ 2. Relativistic corrections due to the magnetic density of neutrons Anomalous magnetic moment μ = n Charged neutron spin-density Spin-orbit density
3
e’ γ e Relativistic Description of Charge Density F (q ) F (q )
2000 Kurasawa and Suzuki for Charge Radius and Phase Shift Analyses e’ N’ virtual 2 F (q ) 1 μ Dirac form factor γ 2 F (q ) 2 μ Pauli form factor Bjorken-Drell e N μ 2 /4M τ Sachs form factor μ τ R. G. Sachs, Phys. Rev. 126, 2256 (1962) Point nucleon density Spin-orbit density (relativistic corrections)
4
{ Point nucleon density Spin-Orbit Density (relativistic corrections)
Effective mass M* = M – V (r) ~0.6 M s { Z N = n. = 0 (Non-relativistic ?)
5
r-x r x Charge Density Nucleon form factor from experiment (<2000)
= 0 for q = 0 T. Eden et al., Phys. Rev. C 50, 1749(1994); M. Meyerhoff et al., Phys. Lett. B 327, 201 (1994); S. Platchkov et al., Nucl. Phys. A510, 740 (1990).
6
1. Relativistic expression of the charge radius
2 independent of <r > n charge radius 2 depends on <r > n k k-2 k-4 <r > c ~ <r >n , <r >n , ・・・・・・
7
+ 3/4M Comment on D-F correction ? Double counting ? consistency ? 2
<r > c J. L. Friar etal., P. R. A 56, (1997) R. Sanchez et al. P.R.L. 96, (2006) A.Ong et al., P. R. C 82, (2010) (S. Abrahamyan et al. P.R.L. 108, (2012)) D-F correction ? Double counting ? consistency ? relativistic 2 + 3/4M +0.033 = -0.090 ours NL3 0.026 -0.157 =
8
Self-consistent Non-rel. four-current
Nishizaki, Kurasawa and Suzuki, Phys. Lett. B209(1988) 6 should satisfy the continuity equation [ H , ρ ] = q ・ J . κ anomalous magnetic moment Four-component Two-component : Foldy -Wouthuysen-Tani transformation in terms of 2 Up to 1/(M*) Darwin-Foldy term =Sachs Spin-Orbit term Example Not so good approx. See also Nishizaki, Kurasawa and Suzuki, Phys. Lett. B171(1) (1986) 1
9
? ? 2 Bjorken-Drell Relativistic expression ( PWBA (m / E ) < 1) e
W. BERTOZZI, J. FRIAR, J. HEISENBERG and J.W. NEGELE、P. L.41B, 408(1972) G. DoDang and N. V. Giai, P.R.C30, 731(1984) 2 To the order we are working ( l/m ), Candra et al, P.R.C13, 245 (1976) ? 2 Bjorken-Drell Relativistic expression ( PWBA (m / E ) < 1) e < J. L. Friar et al., P. R. A 56, (1997) Darwin-Foldy term ? ? Darwin-Foldy correction for Zitterbewegung of the proton A.Ong et al., P. R. C 82, (2010)
10
Ca48 is the best example as neutron-rich nuclei.
% 6.87 13.0 We note k k < r > = < r > But each contribution is model-dependent. c p 4 Loosely bound neutrons contribute to charge < r > - moment appreciably. Ca70 < r > ≒< r > R2p ≒ - (R2n +R4wn) 4 4 c p ~8.2%+4.8%=13%
11
Sly4 is better than NL3 ??? ( ) Exp 2.16% 3.80 % (6.39%) 1.75% (2.81%)
( ) 2.16% 3.80 % (6.39%) 1.75% (2.81%) Li11 = % (Rp =2.213, Rn=2.936) (Exp. Rp =2.467 P.R.L. 96,033002(2006) O = % O = % Sn = % 2.10% 3.43% 1.66% Exp Ca40 Frosch(Fermi) Ca48 FBA by Suda Pb208 Sly4 is better than NL3 ???
12
<r > ・・・・・・・・・・ are observed.
PWBA full <r > ・・・・・・・・・・ are observed. 6 c
13
1968 2. Phase Shift Analyses with Non-rel. and Rel. Models Experiment
Date: Fri, 12 May :19: 2. Phase Shift Analyses with Non-rel. and Rel. Models 1968 Experiment 50 years ago E = 249:5MeV 40Ca Δc = 0:00 Δw = 0:00 Δz = −0:00, ⟨r2⟩ = 3:481 48Ca Δc = 0:00 Δw = 0:00 Δz = −0:00, ⟨r2⟩ = 3:476 Ca40 Ca48 2 c z w √< r > Ca40 3.6758 0.5851 3.4869 Ca48 3.7444 0.5255 -0.03 3.4762 Δ rms ( Ca40 – Ca48) = (fm)
14
Ca40 - Ca48 Difference Frosch et al. Δ rms ( Ca40 –Ca48 ) = + 0.0107
= (fm) 2 r ×Δ( ρ(Ca40 ) – ρ( Ca48) ) D(θ)= Fermi
15
1972 ρ only ! p full 2 I/M Exp. up to 1/M Inconsistent?
See also Candra et al, P.R.C13, 245 (1976) 2 I/M Exp. up to 1/M ρ only ! Inconsistent? p full J.W. Negele, Phys. Rev. Cl (1970) 1260 Density –dependent HF
16
+ 30 years 2003 1972 10 parameters Density Functional Theory ?
SK1 6 parameters + 30 years 2003 D. Vautherin and D.M. Brink, Phys. Rev. C5 (1972) 626 10 parameters Density Functional Theory ? Phenomenological Model !?
17
1998 SLy4 10 parameters ?
18
? Frosch etal. Charge radius
H. Kurasawa and T. Suzuki, P.R.C62, (2000) Phase Shift Analysis for Relativistic and Non-relativistic Charge Density with four-component description of the electron ( m ≠ 0 ) D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev. 95, 500 (1954)
19
1998 1972 SLy4 10 parameters SK1 rms p 3.49 40Ca , 3.51 48Ca
Exp (Fermi) 1972 SK1 6 parameters D. Vautherin and D.M. Brink, Phys. Rev. C 3 (1972) 626 Exp. rms c Ca , Ca rms p Ca , Ca
20
1968 Bohr and Mottelson Vol.1 Woods-Saxon <r > fm (√<r > )
Exp (Fermi) <r > fm (√<r > ) 2 2 2 Δ (+0.042)
21
1976 Relativistic Nuclear Model F only ! full
1p full Relativistic Nuclear Model the theoretical justifications for the inclusion of these effects are impeccable !
22
1997 Relativistic DFT ? ? Incompressibility ? NL3
Nuclear Physics A368 (1981) C.J. HOROWITZ" and BRIAN D. SEROT 1997 parameters 4+3 Relativistic DFT ? NL3 PHYS. REV. C 55 540 New parametrization for relativistic mean field theory Phenomenological Model !? G. A. Lalazissis, J. Konig, and P. Ring parameters 6+3 Charge radius? proton radius ? ? Incompressibility ?
23
2000 NL3 proton radius ? <r > fm (√<r > ) ρ ~ W E=249.5MeV
2000 Kurasawa and Suzuki NL3 2000 E=249.5MeV Exp. (Fermi) proton radius ? <r > fm (√<r > ) 2 2 2 Ring 3.469 3.470 Δ ρ ~ W cn cn
24
<r > fm (√<r > )
NL-SH Date: Mon, 29 May :59: E=249.5MeV Exp. (Fermi) Ruta <r > fm (√<r > ) 2 2 2 Δ Δp (<0) changes the sign Δtotal (>0).
25
E=499.5MeV NL3 NL-SH
26
<r > fm (√<r > )
K=211MeV Exp.(Fermi) E=249.5MeV <r > fm (√<r > ) 2 2 2 Δ
27
<r > fm (√<r > )
2 2 2 Δ NL-SH <r > fm (√<r > ) 2 2 2 Δ What is the difference? Δp (<0) changes the sign Δtotal (>0). D(θ) is sensitive to the difference.
28
P.R.L .95, (2005) B. G. Todd-Rutel and J. Piekarewicz ‘‘FSUGold’’ K 230 MeV No-sea RPA!? Phys. Rev. C 68, ! D. Vretenar, T. Niksˇic´ and P. Ring K=250 MeV represents the lower limit
29
Serious Problems remain in Relativistic Models.
(No-Free term Approx.)
30
2001 No-sea RPA Incompressibility K ~ 270 MeV ? Example 1
Z.Ma, N. Van Giai, A. Wandelt, D. Vretenar and P. Ring Nucl. Phys. A686 (2001) 173 , ・・・・・・・・・・・・・・・・・・・・ Giant Monopole States 0+ Fully Self-consistent ? Relativistic RPA Fermi Sea Dirac Sea No-sea RPA
31
2015 ∞ - B - B
32
2013 The energy‐weighted sum value is 0 ?? Example 2
Fermi Sea Dirac Sea Goto-Inamura Paradox Schwinger Term by hand 中西 場の量子論 (培風館)p136, Itzykson –Zuber Quantum Field Theory (McGrow-Hill) p530 No Sea RPA yields S = 0, but is not relevant to this famaus paradox ! 2013 The paradox was solved analytically by
33
n p 遷移 ・ ・ ・ A + ( ∞ - B ) - ( ∞ - C ) = 3 ( N - Z ) N > Z P N
Other Examples ・ Current Conservation ○ Kurasawa and Suzuki, N.P. A445, 685 (1985) y 141 ・ C.M. Motion × Dawson and Furnstahl, P. R. C42, 2009(1990) 115 n p 遷移 ・ N > Z A ( ∞ - B ) - ( ∞ - C ) = 3 ( N - Z ) P N Dirac Sea N P A = 3(N-Z) (1-2v /3) 2 5 ~12% F
34
The non-rel. Coulomb sum value is Quenched by 20 ~ 30%.
World Data Meziani et al., Phys. Rev.Lett. 52 (1984)2130 H. Kurasawa and T. Suzuki, N. P. A490 (1988) 571 ; P. T. P. 86 (1991) 773. Morgenstern and Meziani, Phys. Lett. B515 (2001)269 Renormalized Hartree+RPA Mean Field+RPA Hartree Mean Field
35
ω core core γ = M * < M Proton ΔEΔt > h/2
+ γ 2 F (q ) M * < M 1 Proton = + + + ・・・・・・・・・ ω core core ΔEΔt > h/2 Kurasawa and Suzuki, Prog. Theor. Phys. 86(1991)773 Swelling of the Proton size 2 0.209 fm 0.811fm fm No calculation with renormalization in finite nuclei yet
36
2015 Chiral Effective Field Theory ? Ab initio?
Theoretical uncertainties, Parameters, Limited space, Conversion …….
37
Ab initio model? State-of-Art EDF Theory ? Exp. 3.37 How many versions ? < 5% ? (D-F correction : double counting !) experiment Ab initio
38
p only ? √12.044 = 3.470 density Ms =520MeV (surface thickness)
Neutron charge- Spin-orbit density density p only ? Ms =520MeV (surface thickness) 525 MeV decreases r from to fm and increases the binding energy per nucleon by 0.13 MeV(15.75MeV). √12.044 = 3.470
39
Horowitz-Serot
40
Summary Electron scattering yields rich and fundamental information on nuclear structure. 1. Not only proton distribution, but also structure of excess neutrons in neutron-rich nuclei would be investigated through electron scattering. 1.1 Together with the density profile, its kth-component provides us with k k k-2 k-4 < r > = < r > + <r >n , <r >n , ・・・・・・ c p 2 2 2 < r > : < r > < r > c n s-o ~ 2.5 % p-density dominates 4 2 4 < r > : < r > < r > c n s-o ~ 10 % n-density is not negligible . 1.2 Together with cross sections, their difference between isotopes gives details of Δρ , Δρ , W c p c n c p, n 2. New data on neutron-rich nuclei would be useful for detailed investigation with phenomenological nuclear models . 3. Not only proton form factor, but also neutron form factors are necessary for studying excess neutrons, and also nuclear response. precise e – d or e-n scattering is required. Thank you
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.