Download presentation
Presentation is loading. Please wait.
1
Trends found on the Periodic Table
2
Periodic Groups Elements in the same column have similar chemical and physical properties These similarities are observed because elements in a column have similar e- configurations (same amount of electrons in outermost shell)
3
Periodic Trends Periodic Trends –can be seen with our current arrangement of the elements (Moseley) Trends we’ll be looking at: Electron affinity Atomic Radius Ionization Energy Electronegativity
4
Atomic Size Size goes UP on going down a group.
Because electrons are added further from the nucleus, there is less attraction. This is due to additional energy levels and the shielding effect. Each additional energy level “shields” the electrons from being pulled in toward the nucleus. Size goes DOWN on going across a period.
5
Atomic Size Size decreases across a period owing to increase in the positive charge from the protons. Each added electron feels a greater and greater + charge because the protons are pulling in the same direction, where the electrons are scattered. Large Small
6
Which is Bigger? Na or K ? Na or Mg ? Al or I ?
7
Ion Sizes Does the size go
up or down when losing an electron to form a cation?
8
Ion Sizes CATIONS are SMALLER than the atoms from which they come.
Li + , 78 pm 2e and 3 p Forming a cation. Li,152 pm 3e and 3p CATIONS are SMALLER than the atoms from which they come. The electron/proton attraction has gone UP and so size DECREASES.
9
Ion Sizes Does the size go up or down when gaining an electron to form an anion?
10
Ion Sizes Forming an anion.
- , 133 pm 10 e and 9 p F, 71 pm 9e and 9p Forming an anion. ANIONS are LARGER than the atoms from which they come. The electron/proton attraction has gone DOWN and so size INCREASES. Trends in ion sizes are the same as atom sizes.
11
Trends in Ion Sizes Figure 8.13
12
Which is Bigger? Cl or Cl- ? K+ or K ? Ca or Ca+2 ? I- or Br- ?
13
. Trend in Electron Affinity
: The energy release when an electron is added to an atom. Most favorable toward NE corner of PT since these atoms have a great affinity for e-. Period Trends: The halogens gain e- most easily, while elements of groups 2 & 18 are lest likely to gain e- Group Trends: more difficult to explain
15
Atomic Radius Atomic Radius – size of an atom
(distance from nucleus to outermost e-)
16
Atomic Radius Trend Group Trend – As you go down a column, atomic radius increases As you go down, e- are filled into orbitals that are farther away from the nucleus (attraction not as strong) Periodic Trend – As you go across a period (L to R), atomic radius decreases As you go L to R, e- are put into the same orbital, but more p+ and e- total (more attraction = smaller size) 16
17
Ionic Radius Ionic Radius – size of an atom when it is an ion
18
Ionic Radius Trend Metals – lose e-, which means more p+ than e- (more attraction) SO… Cation Radius < Neutral Atomic Radius Nonmetals – gain e-, which means more e- than p+ (not as much attraction) SO… Anion Radius > Neutral Atomic Radius
19
Periodic Table: electron behavior
The periodic table can be classified by the behavior of their electrons
20
Ionic Radius Trend anion radius decreases, too.
Group Trend – As you go down a column, ionic radius increases Periodic Trend – As you go across a period (L to R), cation radius decreases, anion radius decreases, too. As you go L to R, cations have more attraction (smaller size because more p+ than e-). The anions have a larger size than the cations, but also decrease L to R because of less attraction (more e- than p+)
21
Ionic Radius
22
Ionic Radius How do I remember this????? The more electrons that are lost, the greater the reduction in size. Li+1 Be+2 protons 3 protons 4 electrons 2 electrons 2 Which ion is smaller?
23
Ionization Energy Ionization Energy – energy needed to remove outermost e-
24
Ionization Energy Group Trend – As you go down a column, ionization energy decreases As you go down, atomic size is increasing (less attraction), so easier to remove an e- Periodic Trend – As you go across a period (L to R), ionization energy increases As you go L to R, atomic size is decreasing (more attraction), so more difficult to remove an e- (also, metals want to lose e-, but nonmetals do not)
25
Ionization Energy IE = energy required to remove an electron from an atom (in the gas phase). Mg (g) kJ ---> Mg+ (g) + e- This is called the FIRST ionization energy because we removed only the OUTERMOST electron Mg+ (g) kJ ---> Mg2+ (g) + e- This is the SECOND IE.
26
Trends in Ionization Energy
IE increases across a period because the positive charge increases. Metals lose electrons more easily than nonmetals. Nonmetals lose electrons with difficulty (they like to GAIN electrons).
27
Trends in Ionization Energy
IE increases UP a group Because size increases (Shielding Effect)
28
Which has a higher 1st ionization energy?
Mg or Ca ? Al or S ? Cs or Ba ?
29
Electronegativity, is a measure of the ability of an atom in a molecule to attract electrons to itself. Concept proposed by Linus Pauling
30
Periodic Trends: Electronegativity
In a group: Atoms with fewer energy levels can attract electrons better (less shielding). So, electronegativity increases UP a group of elements. In a period: More protons, while the energy levels are the same, means atoms can better attract electrons. So, electronegativity increases RIGHT in a period of elements.
31
Electronegativity
32
Which is more electronegative?
F or Cl ? Na or K ? Sn or I ?
33
Electronegativity Electronegativity- tendency of an atom to attract e-
34
Electronegativity Trend
Group Trend – As you go down a column, electronegativity decreases As you go down, atomic size is increasing, so less attraction to its own e- and other atom’s e- Periodic Trend – As you go across a period (L to R), electronegativity increases As you go L to R, atomic size is decreasing, so there is more attraction to its own e- and other atom’s e-
35
Reactivity Reactivity – tendency of an atom to react
Metals – lose e- when they react, so metals’ reactivity is based on lowest Ionization Energy (bottom/left corner) Low I.E = High Reactivity Nonmetals – gain e- when they react, so nonmetals’ reactivity is based on high electronegativity (upper/right corner) High electronegativity = High reactivity
36
Metallic Character Properties of a Metal – 1. Easy to shape
Conduct electricity 3. Shiny Group Trend – As you go down a column, metallic character increases Periodic Trend – As you go across a period (L to R), metallic character decreases (L to R, you are going from metals to non- metals
37
Summary of Trend Periodic Table and Periodic Trends
1. Electron Configuration 3. Ionization Energy: Largest toward NE of PT 4. Electron Affinity: Most favorable NE of PT 2. Atomic Radius: Largest toward SW corner of PT
38
Electron configuration
THe arrangement of electrons in atoms There are distinct electron configurations for each element on the periodic table
39
Rules governing electron configuration
Aufbau principle ( means building up in german) States that as protons are individually added to the nucleus to build up the element, electrons are added to the atomic orbitals. ( large elements don’t always follow this rule) Hund’s rule: orbitals of equal energy are each added to the nucleus to build up the elements
40
Paulie exclusion principle: no 2 electrons in the same atom can have the same set of 4 quantum numbers Heisenberg uncertainty principle It is not possible to accurately measure both the velocity and position of an electron at the same time
41
Aufbau Principle -- “Bottom Up Rule”
41
42
Pauli exclusion principle
An orbital can contain a maximum of 2 electrons, and they must have the opposite “spin.” Example: Determine the electron configuration and orbital notation for the ground state neon atom. 42
43
Basic Principle: electrons occupy lowest energy levels available
Rules for Filling Orbitals Bottom-up (Aufbau’s principle) Fill orbitals singly before doubling up (Hund’s Rule) Paired electrons have opposite spin (Pauli exclusion principle) 43
44
Identify examples of the following principles:
1) Aufbau 2) Hund’s rule 3) Pauli exclusion
45
Atomic Spectra One view of atomic structure in early 20th century was that an electron (e-) traveled about the nucleus in an orbit.
46
Atomic Spectra and Bohr
Bohr said classical view is wrong. Need a new theory — now called QUANTUM or WAVE MECHANICS. e- can only exist in certain discrete orbits e- is restricted to QUANTIZED energy state (quanta = bundles of energy)
47
Quantum or Wave Mechanics
Schrodinger applied idea of e- behaving as a wave to the problem of electrons in atoms. He developed the WAVE EQUATION Solution gives set of math expressions called WAVE FUNCTIONS, Each describes an allowed energy state of an e- E. Schrodinger
48
Heisenberg Uncertainty Principle
Problem of defining nature of electrons in atoms solved by W. Heisenberg. Cannot simultaneously define the position and momentum (= m•v) of an electron. We define e- energy exactly but accept limitation that we do not know exact position. W. Heisenberg
49
Arrangement of Electrons in Atoms
Electrons in atoms are arranged as LEVELS (n) SUBLEVELS (l) ORBITALS (ml)
50
QUANTUM NUMBERS n (principal) ---> energy level
The shape, size, and energy of each orbital is a function of 3 quantum numbers which describe the location of an electron within an atom or ion n (principal) ---> energy level l (orbital) ---> shape of orbital ml (magnetic) ---> designates a particular suborbital The fourth quantum number is not derived from the wave function s (spin) ---> spin of the electron (clockwise or counterclockwise: ½ or – ½)
51
QUANTUM NUMBERS So… if two electrons are in the same place at the same time, they must be repelling, so at least the spin quantum number is different! The Pauli Exclusion Principle says that no two electrons within an atom (or ion) can have the same four quantum numbers. If two electrons are in the same energy level, the same sublevel, and the same orbital, they must repel. Think of the 4 quantum numbers as the address of an electron… Country > State > City > Street
52
Energy Levels Each energy level has a number called the PRINCIPAL QUANTUM NUMBER, n Currently n can be 1 thru 7, because there are 7 periods on the periodic table
53
Energy Levels n = 1 n = 2 n = 3 n = 4
54
Relative sizes of the spherical 1s, 2s, and 3s orbitals of hydrogen.
55
Types of Orbitals The most probable area to find these electrons takes on a shape So far, we have 4 shapes. They are named s, p, d, and f. No more than 2 e- assigned to an orbital – one spins clockwise, one spins counterclockwise
56
Types of Orbitals (l) s orbital p orbital d orbital
57
p Orbitals this is a p sublevel with 3 orbitals These are called x, y, and z There is a PLANAR NODE thru the nucleus, which is an area of zero probability of finding an electron 3py orbital
58
p Orbitals The three p orbitals lie 90o apart in space
59
d Orbitals d sublevel has 5 orbitals
60
The shapes and labels of the five 3d orbitals.
61
f Orbitals For l = 3, > f sublevel with 7 orbitals
62
Diagonal Rule Must be able to write it for the test! This will be question #1 ! Without it, you will not get correct answers ! The diagonal rule is a memory device that helps you remember the order of the filling of the orbitals from lowest energy to highest energy _____________________ states that electrons fill from the lowest possible energy to the highest energy
63
Diagonal Rule 1 2 3 4 5 6 7 s s 2p s 3p 3d s 4p 4d 4f s 5p 5d 5f 5g?
Steps: Write the energy levels top to bottom. Write the orbitals in s, p, d, f order. Write the same number of orbitals as the energy level. Draw diagonal lines from the top right to the bottom left. To get the correct order, follow the arrows! 1 2 3 4 5 6 7 s s 2p s 3p 3d s 4p 4d 4f By this point, we are past the current periodic table so we can stop. s 5p 5d 5f 5g? s 6p 6d 6f 6g? 6h? s 7p 7d 7f 7g? 7h? 7i?
64
Why are d and f orbitals always in lower energy levels?
d and f orbitals require LARGE amounts of energy It’s better (lower in energy) to skip a sublevel that requires a large amount of energy (d and f orbtials) for one in a higher level but lower energy This is the reason for the diagonal rule! BE SURE TO FOLLOW THE ARROWS IN ORDER!
65
How many electrons can be in a sublevel?
Remember: A maximum of two electrons can be placed in an orbital. s orbitals p orbitals d orbitals f orbitals Number of orbitals Number of electrons
66
Electron Configurations
A list of all the electrons in an atom (or ion) Must go in order (Aufbau principle) 2 electrons per orbital, maximum We need electron configurations so that we can determine the number of electrons in the outermost energy level. These are called valence electrons. The number of valence electrons determines how many and what this atom (or ion) can bond to in order to make a molecule 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14… etc.
67
Electron Configurations
2p4 Number of electrons in the sublevel Energy Level Sublevel 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f14… etc.
68
Let’s Try It! H Li N Ne K Zn Pb
Write the electron configuration for the following elements: H Li N Ne K Zn Pb
69
An excited lithium atom emitting a photon of red light to drop to a lower energy state.
70
An excited H atom returns to a lower energy level.
71
Orbitals and the Periodic Table
Orbitals grouped in s, p, d, and f orbitals (sharp, proximal, diffuse, and fundamental) s orbitals d orbitals p orbitals f orbitals
72
Shorthand Notation A way of abbreviating long electron configurations
Since we are only concerned about the outermost electrons, we can skip to places we know are completely full (noble gases), and then finish the configuration
73
Shorthand Notation Step 1: It’s the Showcase Showdown!
Find the closest noble gas to the atom (or ion), WITHOUT GOING OVER the number of electrons in the atom (or ion). Write the noble gas in brackets [ ]. Step 2: Find where to resume by finding the next energy level. Step 3: Resume the configuration until it’s finished.
74
Shorthand Notation [Ne] 3s2 3p5 Chlorine
Longhand is 1s2 2s2 2p6 3s2 3p5 You can abbreviate the first 10 electrons with a noble gas, Neon. [Ne] replaces 1s2 2s2 2p6 The next energy level after Neon is 3 So you start at level 3 on the diagonal rule (all levels start with s) and finish the configuration by adding 7 more electrons to bring the total to 17 [Ne] 3s2 3p5
75
Practice Shorthand Notation
Write the shorthand notation for each of the following atoms: Cl K Ca I Bi
76
Valence Electrons Br [Ar] 3d10 4s2 4p5
Electrons are divided between core and valence electrons B 1s2 2s2 2p1 Core = [He] , valence = 2s2 2p1 Br [Ar] 3d10 4s2 4p5 Core = [Ar] 3d10 , valence = 4s2 4p5
77
Rules of the Game No. of valence electrons of a main group atom = Group number (for A groups) Atoms like to either empty or fill their outermost level. Since the outer level contains two s electrons and six p electrons (d & f are always in lower levels), the optimum number of electrons is eight. This is called the octet rule.
78
Keep an Eye On Those Ions!
Electrons are lost or gained like they always are with ions… negative ions have gained electrons, positive ions have lost electrons The electrons that are lost or gained should be added/removed from the highest energy level (not the highest orbital in energy!)
79
Keep an Eye On Those Ions!
Tin Atom: [Kr] 5s2 4d10 5p2 Sn+4 ion: [Kr] 4d10 Sn+2 ion: [Kr] 5s2 4d10 Note that the electrons came out of the highest energy level, not the highest energy orbital!
80
Keep an Eye On Those Ions!
Bromine Atom: [Ar] 4s2 3d10 4p5 Br- ion: [Ar] 4s2 3d10 4p6 Note that the electrons went into the highest energy level, not the highest energy orbital!
81
Try Some Ions! Write the longhand notation for these: F- Li+ Mg+2
Write the shorthand notation for these: Br- Ba+2 Al+3
82
Exceptions to the Aufbau Principle
(HONORS only) Exceptions to the Aufbau Principle Remember d and f orbitals require LARGE amounts of energy If we can’t fill these sublevels, then the next best thing is to be HALF full (one electron in each orbital in the sublevel) There are many exceptions, but the most common ones are d4 and d9 For the purposes of this class, we are going to assume that ALL atoms (or ions) that end in d4 or d9 are exceptions to the rule. This may or may not be true, it just depends on the atom.
83
Exceptions to the Aufbau Principle
(HONORS only) Exceptions to the Aufbau Principle d4 is one electron short of being HALF full In order to become more stable (require less energy), one of the closest s electrons will actually go into the d, making it d5 instead of d4. For example: Cr would be [Ar] 4s2 3d4, but since this ends exactly with a d4 it is an exception to the rule. Thus, Cr should be [Ar] 4s1 3d5. Procedure: Find the closest s orbital. Steal one electron from it, and add it to the d.
84
Exceptions to the Aufbau Principle
(HONORS only) Exceptions to the Aufbau Principle OK, so this helps the d, but what about the poor s orbital that loses an electron? Remember, half full is good… and when an s loses 1, it too becomes half full! So… having the s half full and the d half full is usually lower in energy than having the s full and the d to have one empty orbital.
85
Exceptions to the Aufbau Principle
(HONORS only) Exceptions to the Aufbau Principle d9 is one electron short of being full Just like d4, one of the closest s electrons will go into the d, this time making it d10 instead of d9. For example: Au would be [Xe] 6s2 4f14 5d9, but since this ends exactly with a d9 it is an exception to the rule. Thus, Au should be [Xe] 6s1 4f14 5d10. Procedure: Same as before! Find the closest s orbital. Steal one electron from it, and add it to the d.
86
Write the shorthand notation for: Cu W Au
(HONORS only) Try These! Write the shorthand notation for: Cu W Au
87
Representing electron configuration
There are 3 different types of notation Orbital notation Electron dot notation Electron configuration notation
88
Ar Kr Xe Ra
89
Orbital notation An unoccupied orbital is represented by a line________ An orbital containing: 1 electron is represented as an arrow going up 2 electrons is represented as one arrow up and one arrow down ( showing opposite spins of electrons)
90
Stern-Gerlach Experiment
Electron spin How could an orbital hold two electrons without electrostatic repulsion? Stern-Gerlach Experiment 90
91
Electron dot notation shows only electrons in the highest or outermost main energy level ( with the highest principle quantum numbers)
93
Electron dot notation with elements leads to the use of lewis structure with compounds
94
Electron configuration notation
eliminates the lines and arrows of orbital notation Instead the number of electrons in a sublevel is shown
95
2 ways to write electron configurations
spdf Notation 1 s value of energy level sublevel no. of electrons spdf NOTATION for H, atomic number = 1 Orbital Box Notation Arrows show electron spin (+½ or -½) ORBITAL BOX NOTATION for He, atomic number = 2 1s 2 95
97
Periodic Table e- configuration from the periodic periodic table (To be covered in future chapters)
Li 2s1 Be 2s2 B 2p1 C 2p2 B 2p1 N 2p3 O 2p4 F 2p5 Ne 2p6 Na 3s1 Mg 3s2 Al 3p1 Si 3p2 P 3p3 S 3p4 Cl 3p5 Ar 3p6 K 4s1 Ca 4s2 Sc 3d1 Ti 3d2 V 3d3 Cr 4s13d5 Mn 3d5 Fe 3d6 Co 3d7 Ni 3d8 Cu 4s13d10 Zn 3d10 Ga 4p1 Ge 4p2 As 4p3 Se 4p4 Be 4p5 Kr 4p6 Rb 5s1 Sr 5s2 Y 4d1 Zr 4d2 Nb 4d3 Mo 5s14d5 Tc 4d5 Ru 4d6 Rh 4d7 Ni 4d8 Ag 5s14d10 Cd 4d10 In 5p1 Sn 5p2 Sb 5p3 Te 5p4 I 5p5 Xe 5p6 Cs 6s1 Ba 6s2 La 5d1 Hf 5d2 Ta 5d3 W 6s15d5 Re 5d5 Os 5d6 Ir 5d7 Ni 5d8 Au 6s15d10 Hg 5d10 Tl 6p1 Pb 6p2 Bi 6p3 Po 6p4 At 6p5 Rn 6p6 Fr 7s1 Ra 7s2 Ac 6d1 Rf 6d2 Db 6d3 Sg 7s16d5 Bh 6d5 Hs 6d6 Mt 6d7
99
Shorthand notation practice
[Noble Gas Core] + higher energy electrons Examples ● Aluminum: 1s22s22p63s23p [Ne]3s23p1 ● Calcium: 1s22s22p63s23p64s2 [Ar]4s2 ● Nickel: 1s22s22p63s23p64s23d8 [Ar]4s23d8 {or [Ar]3d84s2} ● Iodine: [Kr]5s24d105p5 {or [Kr]4d105s25p5} ● Astatine (At): [Xe]6s24f145d106p5 {or [Xe]4f145d106s26p5}
100
Outer electron configuration for the elements
100
101
Using the periodic table to know configurations
1 2 3 4 5 6 7 Ne Ar Kr Xe
102
Valence e’s for “main group” elements
103
Electron configuration for As
103
104
Full Configuration: 1s22s22p63s23p3 Valence Configuration: 3s23p3
Phosphorus Symbol: P Atomic Number: 15 Full Configuration: 1s22s22p63s23p3 Valence Configuration: 3s23p3 Shorthand Configuration: [Ne]3s23p3 1s 2s 2p 3s 3p Box Notation 104
105
electron’s energy depends principally on this
Quantum numbers and orbital energies Each electron in an atom has a unique set of quantum numbers to define it { n, l, ml, ms } n = principal quantum number electron’s energy depends principally on this l = azimuthal quantum number for orbitals of same n, l distinguishes different shapes (angular momentum) ml = magnetic quantum number for orbitals of same n & l, ml distinguishes different orientations in space ms = spin quantum number for orbitals of same n, l & ml, ms identifies the two possible spin orientations Unit 6- Atomic Electon Configurations and Periodicity 105
106
Concept: Each electron in an atom has a unique set of quantum numbers to define it { n, l, ml, ms }
106
107
Electronic configuration of Br
1s2 2s22p6 3s23p63d10 4s24p5 [Ar] 3d104s24p5 [Ar] = “noble gas core” [Ar]3d10 = “pseudo noble gas core” (electrons that tend not to react) Atom’s reactivity is determined by valence electrons valence e’s in Br: 4s24p5 highest n electrons 107
108
transition metals v. main group elements
Valence e- shells for transition metals v. main group elements d orbitals sometimes included in valence shell d orbitals not included in valence shell (pseudo noble gas cores)
109
Rule-of-thumb for valence electrons
Identify all electrons at the highest principal quantum number (n) Examples ● Sulfur: 1s22s22p63s23p4 or [Ne]3s23p4 valence electrons: 3s23p4 ● Strontium: [Kr]5s2 valence electrons: 5s2 ● Gallium: [Ar]4s23d104p1 valence electrons: 4s24p1 ● Vanadium: [Ar]4s23d3 valence electrons: 4s2 or 3d34s2 Use on exams, but recognize limitations Use Table 8.9 for online HW
110
Selenium’s valence electrons
Written for increasing energy: Pseudo noble gas core includes: noble gas electron core d electrons (not very reactive) 110
111
Core and valence electrons in Germanium
Written for increasing energy: Pseudo noble gas core includes: noble gas core d electrons 111
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.