Download presentation
Presentation is loading. Please wait.
1
Electromagnetism in Curved Spacetime
Cho Minseok
2
Electromagnetic Potential and Field
The electromagnetic potential π΄ π The electromagnetic field : πΉ πΌπ½ = π πΌ π΄ π½ β π π½ π΄ πΌ π πΌ =π/π π₯ πΌ : partial derivative
3
Electromagnetic Field
The electromagnetic field πΉ πΌπ½ = π πΌ π΄ π½ β π π½ π΄ πΌ The electromagnetic field satisfies π πΌ πΉ π½πΎ + π π½ πΉ πΎπΌ + π πΎ πΉ πΌπ½ =0 Faradayβs law Gaussβs law
4
Electromagnetic Displacement Field
The electric displacement π· and magnetic field π» π· =β πΈ + π π» =β π΅ β π β : Hodge dual The tensors π and π β1 π 0 ππ π = π 0 π πππ π ππ π 0 β1 π [ππ] = π 0 β1 π πππ π ππ π ππ
5
Electromagnetic Displacement Field
In natural units, π 0 = π 0 β1 =π=1. Then electromagnetic displacement π ππ = π ππΌ πΉ πΌπ½ π π½π βπ β β³ ππ β³ ππ : magnetization-polarization tensor
6
Electric Current Densiity
The electric current density is the divergence of π ππ In a vacuum, π½ π = π π π ππ Ampereβs law Gaussβs law π ππ : antisymmetric β π π π½ π = π π π π π ππ =0 electric current density conservation
7
Lorentz Force Density and Lagrangian
The Lorentz force density π π = πΉ ππ π½ π The Lagrangian density of classical electrodynamics β=β 1 4 πΉ πΌπ½ πΉ πΌπ½ βπ + π΄ πΌ π½ πΌ
8
Electromagnetic Stress-Energy Tensor
The stress-energy tensor π ππ = πΉ ππΌ π πΌπ½ πΉ π½π β 1 4 π ππ πΉ ππΌ π πΌπ½ πΉ π½π π ππ The stress-energy tensor is traceless π ππ π ππ =0 massless photon
9
Electromagnetic Stress-Energy Tensor
We can define a mixed tensor density π π π β‘ π ππΎ π πΎπ βπ Then we can find π» π π π π + π π =0 β π π π π π =β Ξ ππ π π π π + π π EM energy β Work done by EM field on G Work done on matter = +
10
Electromagnetic Wave Equation
The wave equation is modified in two ways. generalization of the Lorenz gauge & covariant derivative π» π π΄ π =0 β‘ π΄ π =β π½ π + π
π π π΄ π The wave equation β‘ πΉ ππ =β2 π
ππππ πΉ ππ + π
ππ πΉ π π β π
ππ πΉ π π + π» π π½ π β π» π π½ π
11
Maxwellβs equation The Einstein field equation
πΊ ππ =8ππΊ Ξ π ππ + πΉ ππ π ππ πΉ ππ β 1 4 π ππ πΉ ππ π ππ πΉ ππ π ππ
12
In the differential geometric view
The Maxwellβs equation π»β§πΉ=0 π»β§ βπΉ=π½
13
Reference me Christos G Tsagas. (2005). Electromagnetic fields in curved spacetimes
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.