Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electromagnetism in Curved Spacetime

Similar presentations


Presentation on theme: "Electromagnetism in Curved Spacetime"β€” Presentation transcript:

1 Electromagnetism in Curved Spacetime
Cho Minseok

2 Electromagnetic Potential and Field
The electromagnetic potential 𝐴 π‘Ž The electromagnetic field : 𝐹 𝛼𝛽 = πœ• 𝛼 𝐴 𝛽 βˆ’ πœ• 𝛽 𝐴 𝛼 πœ• 𝛼 =πœ•/πœ• π‘₯ 𝛼 : partial derivative

3 Electromagnetic Field
The electromagnetic field 𝐹 𝛼𝛽 = πœ• 𝛼 𝐴 𝛽 βˆ’ πœ• 𝛽 𝐴 𝛼 The electromagnetic field satisfies πœ• 𝛼 𝐹 𝛽𝛾 + πœ• 𝛽 𝐹 𝛾𝛼 + πœ• 𝛾 𝐹 𝛼𝛽 =0 Faraday’s law Gauss’s law

4 Electromagnetic Displacement Field
The electric displacement 𝐷 and magnetic field 𝐻 𝐷 =βˆ— 𝐸 + 𝑃 𝐻 =βˆ— 𝐡 βˆ’ 𝑀 βˆ— : Hodge dual The tensors πœ€ and πœ‡ βˆ’1 πœ€ 0 π‘Žπ‘ 𝑐 = πœ€ 0 πœ– π‘Žπ‘π‘‘ 𝑔 𝑑𝑐 πœ‡ 0 βˆ’1 π‘Ž [𝑏𝑐] = πœ‡ 0 βˆ’1 πœ– π‘Žπ‘‘π‘’ 𝑔 𝑑𝑏 𝑔 𝑒𝑐

5 Electromagnetic Displacement Field
In natural units, πœ€ 0 = πœ‡ 0 βˆ’1 =𝑐=1. Then electromagnetic displacement π’Ÿ πœ‡πœˆ = 𝑔 πœˆπ›Ό 𝐹 𝛼𝛽 𝑔 π›½πœˆ βˆ’π‘” βˆ’ β„³ πœ‡πœˆ β„³ πœ‡πœˆ : magnetization-polarization tensor

6 Electric Current Densiity
The electric current density is the divergence of π’Ÿ πœ‡πœˆ In a vacuum, 𝐽 πœ‡ = πœ• 𝜈 π’Ÿ πœ‡πœˆ Ampere’s law Gauss’s law π’Ÿ πœ‡πœˆ : antisymmetric β†’ πœ• πœ‡ 𝐽 πœ‡ = πœ• πœ‡ πœ• 𝜈 π’Ÿ πœ‡πœˆ =0 electric current density conservation

7 Lorentz Force Density and Lagrangian
The Lorentz force density 𝑓 πœ‡ = 𝐹 πœ‡πœˆ 𝐽 𝜈 The Lagrangian density of classical electrodynamics β„’=βˆ’ 1 4 𝐹 𝛼𝛽 𝐹 𝛼𝛽 βˆ’π‘” + 𝐴 𝛼 𝐽 𝛼

8 Electromagnetic Stress-Energy Tensor
The stress-energy tensor 𝑇 πœ‡πœˆ = 𝐹 πœ‡π›Ό 𝑔 𝛼𝛽 𝐹 π›½πœˆ βˆ’ 1 4 𝑔 πœ‡πœˆ 𝐹 πœŽπ›Ό 𝑔 𝛼𝛽 𝐹 π›½πœŒ 𝑔 𝜌𝜎 The stress-energy tensor is traceless 𝑇 πœ‡πœˆ 𝑔 πœ‡πœˆ =0 massless photon

9 Electromagnetic Stress-Energy Tensor
We can define a mixed tensor density 𝔗 πœ‡ 𝜈 ≑ 𝑇 πœ‡π›Ύ 𝑔 π›Ύπœˆ βˆ’π‘” Then we can find 𝛻 𝑏 𝔗 π‘Ž 𝑏 + 𝑓 𝑏 =0 βˆ’ πœ• 𝜈 𝔗 πœ‡ 𝜈 =βˆ’ Ξ“ πœ‡πœˆ 𝜎 𝔗 𝜎 𝜈 + 𝑓 πœ‡ EM energy ↓ Work done by EM field on G Work done on matter = +

10 Electromagnetic Wave Equation
The wave equation is modified in two ways. generalization of the Lorenz gauge & covariant derivative 𝛻 π‘Ž 𝐴 π‘Ž =0 β–‘ 𝐴 π‘Ž =βˆ’ 𝐽 π‘Ž + 𝑅 𝑏 π‘Ž 𝐴 𝑏 The wave equation β–‘ 𝐹 π‘Žπ‘ =βˆ’2 𝑅 π‘Žπ‘π‘π‘‘ 𝐹 𝑐𝑑 + 𝑅 π‘Žπ‘’ 𝐹 𝑏 𝑒 βˆ’ 𝑅 𝑏𝑐 𝐹 π‘Ž 𝑒 + 𝛻 𝑏 𝐽 π‘Ž βˆ’ 𝛻 π‘Ž 𝐽 𝑏

11 Maxwell’s equation The Einstein field equation
𝐺 π‘Žπ‘ =8πœ‹πΊ Ξ› 𝑔 π‘Žπ‘ + 𝐹 π‘Žπ‘ 𝑔 𝑐𝑑 𝐹 𝑑𝑏 βˆ’ 1 4 𝑔 π‘Žπ‘ 𝐹 𝑐𝑑 𝑔 𝑑𝑒 𝐹 𝑒𝑓 𝑔 𝑓𝑐

12 In the differential geometric view
The Maxwell’s equation π›»βˆ§πΉ=0 π›»βˆ§ βˆ—πΉ=𝐽

13 Reference me Christos G Tsagas. (2005). Electromagnetic fields in curved spacetimes


Download ppt "Electromagnetism in Curved Spacetime"

Similar presentations


Ads by Google