Presentation is loading. Please wait.

Presentation is loading. Please wait.

بسم الله الرحمن الرحيم RaRami Abu Baker An- Najah National University

Similar presentations


Presentation on theme: "بسم الله الرحمن الرحيم RaRami Abu Baker An- Najah National University"— Presentation transcript:

1 بسم الله الرحمن الرحيم RaRami Abu Baker An- Najah National University
Faculty of Engineering Department of Civil Engineering Graduation Project Supervised By Dr. Monther Dwikat Prepared by: RaRami Abu Baker Jamell Abu Baker Shadi Ismaeel 2009/2010 Graduation Project title: Integration Design for Yabad Secondary Boys Skcool

2 Main topics Chapter one: Introduction General Materials Loads
Codes and standards Building structural system

3 Main topics Chapter Three: Structural Analysis and Design
General Slab systems and design Beam design Column design Property/Stiffness Modification Factors Structural Model Verification Design of Slabs Design of Beams Design of Columns Design of Footings Design of stair and shear wall

4 Introduction General:
Chapter One Introduction General: The Ya'bad's secondary boys school is composed of one block, that consists of three floors with an area of 714 m2,and the total area of site is 3395 m2 . The ground floor includes class rooms, entrance hall, computer lab, art and crafts room and administration office. The first floor includes class rooms, teachers room and science lab. The second floor includes class rooms. The exterior walls are masonry that is formed of concrete, blocks, and masonry stones. The interior walls are made of blocks.

5 Chapter One Introduction

6 Materials: Introduction Structural elements: Concrete fc` = 240 kg/cm2
Chapter One Introduction Materials: Structural elements: Concrete fc` = 240 kg/cm2 Steel fy = 4200 kg/cm2. There are non structural materials that are used in the structure which are: Blocks. Masonry stone. Tiles. Filling under tiles.

7 Introduction Loads: There are two main types of loads: Gravity loads:
Chapter One Introduction Loads: There are two main types of loads: Gravity loads: Live load: 0.3 ton/m2 (class room). 0.5 ton/ m2 (corridors and stairs) 0.5 ton/ m2 (halls and labs). 0.2 ton/m2 (roof). 2.5 ton/m2(stair roof) Dead load: it is consisting of own weight of the structure and any permanent components. The super imposed dead load is 0.5 ton/m2

8 Lateral load Introduction Seismic loads:
Chapter One Introduction Lateral load Seismic loads: The structure is located in Jenin area which is classified as zone 2B according to Palestine seismic zones. The UBC97 code seismic parameters are as follows: The seismic zone factor, Z= 0.2. The soil is very dense soil and soft rock, so the soil type is Sc. The importance factor, I= 1.0 . The ductility factor, R= 5.6. The seismic coefficient, Ca=0.24. The seismic coefficient, Cv=0.32.

9

10 Building Structural System:
Chapter One Introduction Codes and Standards: ACI UBC-97 IBC 2009 ASTM Building Structural System: The slabs structural system is formed of one way ribbed slabs with drop beams. The beams are supported by separate columns which are the main vertical structural elements. The building structural system is formed of perimeter and stair case shear walls which is the main lateral forces resisting structural system, in addition to the building frames of beams and columns.

11 Chapter Three Structural Design
General: This chapter includes 1D & 3D modeling for the project. The sections for slabs, beams, and columns are assumed and defined. Structural analysis comprises of set of physical and mathematical laws required to study and predict the behavior of structures under a given set of actions. The structural analysis of the model is aimed to determine the external reactions at the supports and the internal forces like bending moments, shear forces, and normal forces for the different members. These internal member forces are used to design the cross section of three elements.

12 Chapter Three Structural Design
1D Analysis and Design: One way ribbed slabs : The deflection is the most important factor that controls the slab thickness, Minimum thickness of one way ribbed slab from ACI equals (L/18.5) for one end continuous.

13 Chapter Three Structural Design
Beam design: Generally, concrete beams have a rectangular cross section since it is easy to be constructed in the field All beams must be able to resist shear, bending moments, and torsional stresses

14 Chapter Three Structural Design
Column Design: Columns are structural elements used primarily to support axial compressive loads, that coming from slabs or beams above. Practically columns are subjected not to axial loads but also to moment from direct loading or end rotation.

15 Chapter Three Structural Design
Compatibility check:

16 Check equilibrium: The total building dead load = 2084.8 ton
Chapter Three Structural Design Check equilibrium: The total building dead load = ton The total building live load= ton The total building super imposed dead load = ton From SAP2000: Total dead load= ton Total live load= ton Total Sup. Imp. D.L = ton Error % in dead load = 2 %< 5% ok. Error % in live load = 1.0 %< 5% ok. Error % in super imposed D.L = 2.4 %< 5% ok.

17 Chapter Three Structural Design
Check Internal Forces: Slabs & Beams: In order to check the internal forces in slabs and beams the bending moment values for number of spans will be obtained from SAP2000 and compared with the value of (ωL2\8), where ( ω= 1.2D + 1.6L). Columns: As for columns the axial force values will be compared between SAP2000 and the manual method. - Where in any, the percentage error should not exceed %

18 Chapter Three Structural Design

19 Chapter Three Structural Design
Beams of Block 1 Beam Dimension of beam (bXh)(cmXcm) station Area of steel due to moment and torsion Moment Shear span Area of steel(cm²) +ve Area of steel(cm²) -ve # of bars Bottom As min As provided Top B18 30X75 Left 4.825 7.128 4Φ16 5.659 1Φ10/10 5 Middle 5.181 4.659 1Φ8/15 Right 4.769 5.491 5.346 5.120 6 5.663 5.818 8.206 B19 25X60 5.158 4.703 5Φ14 7.321 1 7.736 3.820 4Φ12 4.879 7.059 B20 4.805 5.327 5Φ12 6.943 3.433 4.560 5.261 B21 4.515 5.834 4.679 4.252 4.544

20 Details Chapter Three Structural Design Floor Columns C1 C2 C3
1st floor Section 50x25 40x25 rebar percentage 1.56% 1% AS 19.5 12.5 10.0 # of bars 10Ф16 8Ф16 8Ф14 2nd floor 3rd floor

21 Chapter Three Structural Design
Footing: Footings are defined as the substructure whose function is to transmit safely the concentrated column or wall reactions to the soil stratum. footings which used in this project can be classified into the following types: 1) Isolated footing: they have rectangular, square, or circular shape. This type of footing is used for small loads, and/or large soil allowable bearing capacity. 2) Wall footing: it is a continuous footing along the length of the wall.

22 Three Dimensional Structural Analysis and Design
Chapter Three Three Dimensional Structural Analysis and Design ID Gravity Service (ton) Seismic Service gravity area (m) seismic area control area Dimensions (mXm) PU ( ton) H (cm) Reinforcement /m F1 90 105 3.6 3.2 1.8x2 132 50 7Φ14 F2 133 134 5.02 4.1 2.1 x 2.4 170 8Φ14 F3 46 2 1.4 1.4 x 1.6 60

23

24 Three Dimensional Structural Analysis and Design
Chapter Three Three Dimensional Structural Analysis and Design Design Of Shear Walls: Shear walls are vertical elements of the horizontal force resisting system Shear walls should be located on each level of the structure, to form an effective box structure, equal length shear walls are preferred to be placed symmetrically on all exterior walls of the building. Shear walls must provide the necessary lateral strength to resist horizontal earthquake forces. When shear walls are strong enough, they will transfer these horizontal forces to the next element in the load path below them.

25 Chapter Three Structural Design
Design Of Stairs: In this section stairs was designed, started by estimating the dead load and live load for this stairs, then performed and analyzed as simple model by SAP2000 program and took the deflection, shear and moment on it. Thickness of slab: One end continuous t =L/24 use 20 cm thickness

26 Section A-A reinforcement
Chapter Three Structural Design Section A-A reinforcement

27 Thanks for listening


Download ppt "بسم الله الرحمن الرحيم RaRami Abu Baker An- Najah National University"

Similar presentations


Ads by Google