Download presentation
Presentation is loading. Please wait.
Published byMitchell Simmons Modified over 6 years ago
1
The Ellipsoid Method Ellipsoid º squashed sphere Given K, find xÎK.
Start with ball containing (polytope) K. yi = center of current ellipsoid. Given K, find xÎK. If yiÎK then DONE; (return yi) If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. K
2
The Ellipsoid Method Ellipsoid º squashed sphere Given K, find xÎK.
Start with ball containing (polytope) K. yi = center of current ellipsoid. Given K, find xÎK. If yiÎK then DONE; (return yi) If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. K New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,t.
3
The Ellipsoid Method Ellipsoid º squashed sphere Given K, find xÎK.
Start with ball containing (polytope) K. yi = center of current ellipsoid. Given K, find xÎK. If yiÎK then DONE; (return yi) If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. K New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,t.
4
The Ellipsoid Method Ellipsoid º squashed sphere Given K, find xÎK.
Start with ball containing (polytope) K. yi = center of current ellipsoid. Given K, find xÎK. If yiÎK then DONE; (return yi) If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. K New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,t.
5
The Ellipsoid Method Ellipsoid º squashed sphere Given K, find xÎK.
Start with ball containing (polytope) K. yi = center of current ellipsoid. Given K, find xÎK. If yiÎK then DONE; (return yi) If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. K New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,t.
6
The Ellipsoid Method for Linear Optimization
Ellipsoid º squashed sphere Start with ball containing (polytope) K. yi = center of current ellipsoid. Max c.x subject to xÎK. If yiÎK, K If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,T.
7
The Ellipsoid Method for Linear Optimization
Ellipsoid º squashed sphere Start with ball containing (polytope) K. yi = center of current ellipsoid. Max c.x subject to xÎK. If yiÎK, use objective function cut c.x ≥ c.yi to chop off K, half-ellipsoid. K If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,T. c.x ≥ c.yi
8
The Ellipsoid Method for Linear Optimization
Ellipsoid º squashed sphere Start with ball containing (polytope) K. yi = center of current ellipsoid. Max c.x subject to xÎK. If yiÎK, use objective function cut c.x ≥ c.yi to chop off K, half-ellipsoid. K If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. Repeat for i=0,1,…,T. c.x ≥ c.yi
9
The Ellipsoid Method for Linear Optimization
Ellipsoid º squashed sphere Start with ball containing (polytope) K. yi = center of current ellipsoid. Max c.x subject to xÎK. x2 If yiÎK, use objective function cut c.x ≥ c.yi to chop off K, half-ellipsoid. If yiK, use separating hyperplane to chop off infeasible half-ellipsoid. x1 xk New ellipsoid = min. volume ellipsoid containing “unchopped” half-ellipsoid. P x* x1, x2, …, xk: points lying in P. c.xk is a close to optimal value.
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.