Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex Number.

Similar presentations


Presentation on theme: "Complex Number."β€” Presentation transcript:

1 Complex Number

2 Complex Number Form: π‘₯+𝑦𝑖

3 Complex Number Form: π‘₯+𝑦𝑖 x and y are real number
i is the imaginary unit: square root of -1 (𝑖= βˆ’1 )

4 Complex Number Elementary operations
Conjugate: negative the imaginary part Say 𝑧=π‘₯+𝑦𝑖, then the conjugate of z will be: 𝑧 =π‘₯βˆ’π‘¦π‘–

5 Complex Number Elementary operations Conjugate: 𝑧 =π‘₯βˆ’π‘¦π‘–
Addition and Subtraction: complex number a and b π‘ŽΒ±π‘= 𝑅𝑒 π‘Ž ±𝑅𝑒 𝑏 + πΌπ‘š π‘Ž Β±πΌπ‘š 𝑏

6 Complex Number Elementary operations π‘ŽΒ±π‘= 𝑅𝑒 π‘Ž ±𝑅𝑒 𝑏 + πΌπ‘š π‘Ž Β±πΌπ‘š 𝑏
Conjugate: 𝑧 =π‘₯βˆ’π‘¦π‘– π‘ŽΒ±π‘= 𝑅𝑒 π‘Ž ±𝑅𝑒 𝑏 + πΌπ‘š π‘Ž Β±πΌπ‘š 𝑏 Multiplication and Division: follow the distributive property π‘₯+𝑦𝑖 Γ— 𝑒+𝑣𝑖 =π‘₯𝑒+π‘₯𝑣𝑖+𝑦𝑒𝑖+𝑦𝑖𝑣𝑖 =π‘₯𝑒+ π‘₯𝑣+𝑦𝑒 𝑖+𝑦𝑣 𝑖 = π‘₯π‘’βˆ’π‘¦π‘£ + π‘₯𝑣+𝑦𝑒 𝑖

7 Complex Number Elementary operations π‘ŽΒ±π‘= 𝑅𝑒 π‘Ž ±𝑅𝑒 𝑏 + πΌπ‘š π‘Ž Β±πΌπ‘š 𝑏
Conjugate: 𝑧 =π‘₯βˆ’π‘¦π‘– π‘ŽΒ±π‘= 𝑅𝑒 π‘Ž ±𝑅𝑒 𝑏 + πΌπ‘š π‘Ž Β±πΌπ‘š 𝑏 Multiplication and Division: follow the distributive property π‘₯+𝑦𝑖 Γ— 𝑒+𝑣𝑖 = π‘₯π‘’βˆ’π‘¦π‘£ + π‘₯𝑣+𝑦𝑒 𝑖 π‘₯+𝑦𝑖 𝑒+𝑣𝑖 = π‘₯𝑒+𝑦𝑣 𝑒 2 + 𝑣 π‘¦π‘’βˆ’π‘₯𝑣 𝑒 2 + 𝑣 2 𝑖

8 Complex Number Complex Number on Cartesian Coordinate System
x is the real axis, y is the imaginary axis

9 Complex Number Complex Number on Cartesian Coordinate System
x is the real axis, y is the imaginary axis If z = x + yi, then the angle of z is the πœƒ= tan βˆ’1 ( 𝑦 π‘₯ )

10 Complex Number Complex Number on Cartesian Coordinate System
x is the real axis, y is the imaginary axis If z = x + yi, then the angle of z is the πœƒ= tan βˆ’1 ( 𝑦 π‘₯ ) Absolute value of z: 𝑧 = π‘₯ 2 + 𝑦 2

11 Complex Number Complex Number on Cartesian Coordinate System
x is the real axis, y is the imaginary axis If z = x + yi, then the angle of z is the πœƒ= tan βˆ’1 ( 𝑦 π‘₯ ) Absolute value of z: 𝑧 = π‘₯+𝑦𝑖 = π‘₯ 2 + 𝑦 2 Square root of z: 𝑧 = π‘₯+𝑦𝑖 = π‘₯+𝑦𝑖 +π‘₯ 2 ±𝑖 π‘₯+𝑦𝑖 βˆ’π‘₯ 2


Download ppt "Complex Number."

Similar presentations


Ads by Google