Presentation is loading. Please wait.

Presentation is loading. Please wait.

Man Vs. Machine: A Prime Example of Number Sense

Similar presentations


Presentation on theme: "Man Vs. Machine: A Prime Example of Number Sense"โ€” Presentation transcript:

1 Man Vs. Machine: A Prime Example of Number Sense
AMTNYS October 27-29, 2011 Presented By: Adam Sprague and Stephanie Wisniewski SUNY Fredonia

2 Round 1: Repeat or Terminate
๐Ÿ ๐Ÿ’๐ŸŽ Terminate ๐Ÿ ๐Ÿ ๐Ÿ’๐Ÿ– ๐Ÿ“ ๐Ÿ“๐Ÿ” ๐Ÿ— Repeat ๐Ÿ ๐Ÿ•๐Ÿ“ Repeat

3 The Number Sense Involved
We recognize a terminating decimal as a fraction with ๐Ÿ๐ŸŽ ๐’‘ in the denominator. Since the prime factorization of ๐Ÿ๐ŸŽ is ๐Ÿโˆ™๐Ÿ“, the denominator can also be written as ๐Ÿ ๐’‘ ๐Ÿ“ ๐’‘ where ๐’‘ is any integer. For example: ๐Ÿ ๐Ÿ‘๐Ÿ = ๐Ÿ ๐Ÿ ๐Ÿ“ = ๐Ÿ“ ๐Ÿ“ ๐Ÿ“ ๐Ÿ“ โˆ™ ๐Ÿ ๐Ÿ ๐Ÿ“ = ๐Ÿ“ ๐Ÿ“ ๐Ÿ“ ๐Ÿ“ โˆ™ ๐Ÿ ๐Ÿ“ = ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ“ ๐Ÿ๐ŸŽ ๐Ÿ“ =๐ŸŽ.๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ“ Since the denominator ๐Ÿ‘๐Ÿ could be deduced to a power of ten, ๐Ÿ๐ŸŽ ๐Ÿ“ , we were able to determine this was a terminating decimal.

4 The Number Sense Involved
A fraction repeats when the denominator cannot be rewritten as a power of ten. For example: ๐Ÿ ๐Ÿ•๐Ÿ“ = ๐’ ๐Ÿ๐ŸŽ ๐Ÿ ๐Ÿ ๐’‘ ๐Ÿ“ ๐’‘ = ๐Ÿ๐ŸŽ ๐’‘ =๐Ÿ•๐Ÿ“๐’=๐Ÿ‘โˆ™ ๐Ÿ“ ๐Ÿ โˆ™๐’ Due to the uniqueness of prime factorization it will repeat since ๐Ÿ‘ is not a prime factor of ๐Ÿ๐ŸŽ.

5 Round 2: Is This Number a Perfect Square
๐Ÿ–๐Ÿ Yes, Perfect Square ๐Ÿ–๐Ÿ๐ŸŽ No, Not a Perfect Square ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ Yes, Perfect Square ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ No, Not a Perfect Square

6 The Number Sense Involved
Every perfect square can be broken down to its prime factors each raised to an even power. We have a perfect square when all the powers of the prime factors are even, such as in ๐Ÿ–๐Ÿ, ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ, ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ and ๐Ÿ ๐Ÿ’๐Ÿ’ ๐Ÿ“ ๐Ÿ๐Ÿ‘๐Ÿ– ๐Ÿ‘ ๐Ÿ๐Ÿ’๐Ÿ’ ๐Ÿ• ๐Ÿ๐Ÿ ๐Ÿ— ๐Ÿ . This is not the case for ๐Ÿ–๐Ÿ๐ŸŽ or ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ because their prime factors are not all of even powers.

7 The Number Sense Involved
๐Ÿ–๐Ÿ= ๐Ÿ— ๐Ÿ = ๐Ÿ‘ ๐Ÿ’ ๐Ÿ–๐Ÿ๐ŸŽ= ๐Ÿ— ๐Ÿ โˆ™๐Ÿ๐ŸŽ= ๐Ÿ‘ ๐Ÿ’ โˆ™๐Ÿโˆ™๐Ÿ“ ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ= ๐Ÿ— ๐Ÿ โˆ™ ๐Ÿ๐ŸŽ ๐Ÿ = ๐Ÿ‘ ๐Ÿ’ โˆ™ ๐Ÿ ๐Ÿ โˆ™ ๐Ÿ“ ๐Ÿ ๐Ÿ–๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ= ๐Ÿ— ๐Ÿ โˆ™ ๐Ÿ๐ŸŽ ๐Ÿ‘ = ๐Ÿ‘ ๐Ÿ’ โˆ™ ๐Ÿ ๐Ÿ‘ โˆ™ ๐Ÿ“ ๐Ÿ‘ ๐Ÿ ๐Ÿ’๐Ÿ’ ๐Ÿ“ ๐Ÿ๐Ÿ‘๐Ÿ– ๐Ÿ‘ ๐Ÿ๐Ÿ’๐Ÿ’ ๐Ÿ• ๐Ÿ๐Ÿ = ( ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ“ ๐Ÿ”๐Ÿ— ๐Ÿ‘ ๐Ÿ๐Ÿ๐Ÿ ๐Ÿ• ๐Ÿ” ) ๐Ÿ

8 Round 3: Sums of Consecutive Integers and Perfect Squares
In 2002, the 12th-grade American Mathematics Competition (AMC 12) asked the following problem: The sum of 18 consecutive positive integers is a perfect square. What is the smallest possible value for this sum? [

9 Guess & Check Method 18 Consecutive Integers
๐Ÿ+๐Ÿ+๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ– =๐Ÿ๐Ÿ•๐Ÿ ๐Ÿ+๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ— =๐Ÿ๐Ÿ–๐Ÿ— ๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ =๐Ÿ๐ŸŽ๐Ÿ• ๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ =๐Ÿ๐Ÿ๐Ÿ“= ๐Ÿ๐Ÿ“ ๐Ÿ

10 What If We Askedโ€ฆ Can the sum of 16 consecutive positive integers be a perfect square? Let us try our guess and check approach; ๐Ÿ+๐Ÿ+๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”=๐Ÿ๐Ÿ‘๐Ÿ” ๐Ÿ+๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•=๐Ÿ๐Ÿ“๐Ÿ ๐Ÿ‘+๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–=๐Ÿ๐Ÿ”๐Ÿ– ๐Ÿ’+๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—=๐Ÿ๐Ÿ–๐Ÿ’ ๐Ÿ“+๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ=๐Ÿ๐ŸŽ๐ŸŽ ๐Ÿ”+๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ=๐Ÿ๐Ÿ๐Ÿ” ๐Ÿ•+๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ=๐Ÿ๐Ÿ‘๐Ÿ ๐Ÿ–+๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘+๐Ÿ๐Ÿ’+๐Ÿ๐Ÿ“+๐Ÿ๐Ÿ”+๐Ÿ๐Ÿ•+๐Ÿ๐Ÿ–+๐Ÿ๐Ÿ—+๐Ÿ๐ŸŽ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ+๐Ÿ๐Ÿ‘=๐Ÿ๐Ÿ’๐Ÿ– โ‹ฎ

11 The Number Sense Involved
Let ๐’, ๐’+๐Ÿ, ๐’+๐Ÿ, ๐’+๐Ÿ‘, โ€ฆ, ๐’+๐Ÿ๐Ÿ’, ๐’+๐Ÿ๐Ÿ“ represent the ๐Ÿ๐Ÿ” consecutive positive integers. The sum of ๐Ÿ๐Ÿ” consecutive positive integers is =๐Ÿ– ๐Ÿ๐’+๐Ÿ๐Ÿ“ = ๐Ÿ ๐Ÿ‘ (๐Ÿ๐’+๐Ÿ๐Ÿ“) Now, what can we determine from this product? ๐ง + ๐ง+๐Ÿ + ๐ง+๐Ÿ + ๐ง+๐Ÿ‘ + ๐ง+๐Ÿ’ + ๐ง+๐Ÿ“ + ๐ง+๐Ÿ” + ๐ง+๐Ÿ• +(๐ง+๐Ÿ๐Ÿ“) + ๐ง+๐Ÿ๐Ÿ’ + ๐ง+๐Ÿ๐Ÿ‘ + ๐ง+๐Ÿ๐Ÿ + ๐ง+๐Ÿ๐Ÿ + ๐ง+๐Ÿ๐ŸŽ + ๐ง+๐Ÿ— + ๐ง+๐Ÿ– ๐Ÿ๐ง+๐Ÿ๐Ÿ“

12 The Number Sense Involved
Since ๐Ÿ–= ๐Ÿ ๐Ÿ‘ and we know that (๐Ÿ๐’+๐Ÿ๐Ÿ“) is an odd number, the prime factorization of our sum will always have a factor of ๐Ÿ ๐Ÿ‘ . Since we also know that a perfect square has all prime factors with even exponents we know that it is not possible for ๐Ÿ๐Ÿ” consecutive integers to have a sum which is a perfect square.

13 In Conclusionโ€ฆ Thank you. Adam Sprague Stephanie Wisniewski
SUNY Fredonia


Download ppt "Man Vs. Machine: A Prime Example of Number Sense"

Similar presentations


Ads by Google