Download presentation
Presentation is loading. Please wait.
Published byKlara Jansson Modified over 6 years ago
1
Polymer-Clay Nanobrick Wall Thin Films as Foil Replacements
Morgan A. Priolo, Kevin M. Holder, Laura Bolling, Jaime C. Grunlan* CHEMICAL & MECHANICAL ENGINEERING TEXAS A&M UNIVERSITY COLLEGE STATION, TX 77843 AIChE Annual meeting, Pittsburg, PA– November 1st, 2012
2
Acknowledgements POLYMER NANO COMPOSITES POLYMER NANO COMPOSITES
NANOCOMPOSITES.TAMU.EDU POLYMER NANO COMPOSITES
3
Applications Food Packaging Flexible Electronics Pressurized Systems
cryovac.com Pressurized Systems Separation Membranes mitsubishicars.com Food packaging- longer shelf life, pressurized systems-keep gas in, flex electronics- keep electrical components from being ruined by ogygen, sep membranes- H purification to desalination of water ornl.gov Eichie, F. E. et al., J. Appl. Polym. Sci. 2006, 99, 725. Grunlan, J. C. et alJ. Appl. Polym. Sci. 2004, 93, 1102. Graff, G. L. et al. Flexible Flat Panel Displays, Crawford, G. P., Ed. John Wiley & Sons, Ltd.: 2005. 3
4
Motivation Metallized Plastic
Thin metal films have been deposited onto polymeric webs for gas barrier since the 1970s. In 2001 alone, 11 billion sq. meters were used for packaging. Only 10–100 nm imparts 1000x reduction in permeability. Major drawbacks: Not microwavable Not recyclable Completely opaque × 2,000,000 -permeability- rate of oxygen passing through membrane per area per pressure Graff et. al. In Flexible Flat Panel Displays; Crawford, G. P., Ed.; John Wiley & Sons, Ltd.: 2005, p 57. 4
5
Background Silicon Oxide (SiOx) Barrier Film Polymer Multilayer (PML)
Transparency, microwavability Cracking, poor adhesion to polymer Roberts et. al. J. Membr. Sci. 2002, 208, 75. Leterrier, Y. Prog. Mater. Sci. 2003, 48, 1. Polymer Multilayer (PML) Packaging solution for electronics Complicated processing, cracking (better than SiOx) Affinito et. al. Thin Solid Films 1996, 291, 63. Graff et. al. In Flexible Flat Panel Displays; Crawford, G. P., Ed.; John Wiley & Sons, Ltd.: 2005, p 57. Use “extreme conditions” Bulk Composite Poor transparency Relatively low barrier Nazarenko et. al. J. Polym. Sci. B: Polym. Phys. 2007, 45, 1733. 5
6
Background Property comparison of SiOx, polymer multilayer and layer-by-layer films Layer-by-layer assembly can produce super gas barrier films without any of the drawbacks of previously mentioned techniques! 1 Inagaki, N.; Tasaka, S.; Hiramatsu, H., Journal of Applied Polymer Science 1999, 71, 2091. 2 Affinito, J. D.; Gross, M. E.; Coronado, C. A.; Graff, G. L.; Greenwell, E. N.; Martin, P. M., Thin Solid Films 1996, 291, 63. 3 Jang, W. S.; Rawson, I.; Grunlan, J. C., Thin Solid Films 2008, 516, 4819. 6
7
Ploehn, H. J.; Liu, C. Y., Ind. Eng. Chem. Res. 2006, 45, 7025.
Thin Film Materials Sodium Montmorrilonite Clay (MMT): (Cloisite-Na+ from Southern Clay) Platelet structure (~1nm thick) Aspect ratio (ℓ/d) of 100–1000 1.0 wt.% suspension Negatively charged in water Ploehn, H. J.; Liu, C. Y., Ind. Eng. Chem. Res. 2006, 45, 7025. Branched Polyethylenimine (PEI): (Purchased from Sigma–Aldrich) Mw = 25,000 g/mol 0.1 wt.% at pH = 10 Positively charged in water Cool materials Poly(acrylic acid) (PAA): (Purchased from Sigma–Aldrich) Mw = 100,000 g/mol 0.2 wt.% at pH = 4 Negatively charged in water Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 7
8
Layer-by-Layer Assembly
Repeat until desired # of layers are deposited 1 Bilayer Substrate ̶ ̶ ̶ ̶ Rinse Dry Ambient Processing Tunable Properties Nanoparticle Control Priolo, M. A.; Gamboa, D.; Grunlan, J. C. ACS Applied Materials & Interfaces 2010, 2, 312. Decher, G. Science 1997, 277, 1232. 8
9
Layer-by-Layer Assembly
2D Robot 3D Robot Lbl process- “homemade robot” Gamboa, D.; Priolo, M. A.; Ham, A.; Grunlan, J. C., Rev Sci Instrum 2010, 81, Jang, W. S.; Grunlan, J. C., Rev Sci Instrum 2005, 76, 9
10
Film Thickness Delayed exponential growth
Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 10
11
Film Composition 26.2% MMT 36.7% MMT 48.6% MMT 53.7% MMT
Clay % decreases as film is grown, exponential growth from polymer layers, mass is exponential also Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 11
12
Optical Clarity > 95% Transparent
Very high transparency lends well to foil replacement > 95% Transparent Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 12
13
Super Gas Barrier Without PAA, this level of barrier
Bare PET QLs OTR (cc/(m2·day·atm)) Film Thickness (nm) Film Permeability (10-16 cc·cm/(cm2·s·Pa)) 2 8.169 16.1 3 2.341 28.3 4 ≤0.005 50.9 ≤ 5 <0.005 82.6 < Lowest reported permeability for a polymer – clay thin film! Without PAA, this level of barrier requires at least 24 PEI/MMT BLs. Morgan A. Priolo, Kevin M. Holder, Daniel Gamboa, and Jaime C. Grunlan Langmuir 2011 27 (19), 12106 SUPER GAS BARRIER!! 3 orders of magnitude increase from bare to 4 QL, nanobrick wall structure, 24 BL=120nm Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 13
14
Nanobrick Wall Structure
80 nm Mention discrete layers 20 nm 5QL on 5-mil PS Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 14
15
Humidity & Crosslinking (7QL)
Thermal cross-linking improves humid barrier performance of neat thin film by 33% One problem with lbl from aqueos solutions is diminished OTR at high RH, crosslinking improves this by 33% (7QL film) Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Nano Letters 2010, 10, 4970. 15
16
Conclusion & Future Work
Transparent QL films made using LbL deposition 4 QL film has lowest reported permeability for a clay-polymer film Need to evaluate gas separation Will work to eliminate humidity sensitivity -optimize clay spacing 16
17
Questions?
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.