Presentation is loading. Please wait.

Presentation is loading. Please wait.

September 2004 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [MultiBand OFDM Update and Overview] Date.

Similar presentations


Presentation on theme: "September 2004 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [MultiBand OFDM Update and Overview] Date."— Presentation transcript:

1 September 2004 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [MultiBand OFDM Update and Overview] Date Submitted: [ 12 September, 2004] Source: [Matthew B. Shoemake] Company [WiQuest Communications, Inc.] Address [8 Prestige Circle, Suite 110, Allen, Texas, USA 75002] Voice:[ ], FAX: [ ], Re: [MultiBand OFDM Proposal, doc r4] Abstract: [This presentation provides an overview of the MultiBand OFDM proposal. Details of the actual proposal may be found in document r4. This presentation provides high level technical details of the MultiBand OFDM proposal. It attempts to communicate what MultiBand OFDM is, why key technical decision were made, how the solution functions and who key supporters of the proposal are.] Purpose: [To inform voters of the merits of MultiBand OFDM thereby allowing them to make an informed vote in the IEEE a technical selection procedure.] Notice: This document has been prepared to assist the IEEE P It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P Matthew B. Shoemake, WiQuest

2 September 2004 Introduction The purpose of this document is to provide an overview of MultiBand OFDM (doc ) including Technical advantages and characteristics Identification of key supporters References to supporting material Matthew B. Shoemake, WiQuest

3 Proposal Overview The MultiBand OFDM proposal:
September 2004 Proposal Overview The MultiBand OFDM proposal: Is based on proven OFDM technology Used in IEEE a and g Achieves data rates of 53 to 480 Mbps Support for 4 to 16 simultaneous piconets Spectrum easily sculpted for international regulatory domain compliance Is easily extensible for future range/rate improvements Matthew B. Shoemake, WiQuest

4 Frame Format PLCP Preamble PLCP Header Payload
September 2004 Frame Format PHY Tail MAC Tail Pad Frame Payload Tail Pad PLCP Preamble HCS FCS Header Bits Header Bits Bits Variable Length: 0 - 4095 bytes Bits Bits PLCP Header 53.3*, 80, 110*, 160, 200*, 320, 400, 480 Mb/s 53.3 Mb/s * - Mandatory Rates PLCP Preamble Deterministic sequence Allows packet detect and piconet identification PLCP Header Encoded at 53 Mbps Contains reserved bits for future extensions Payload Coded at 53 to 480 Mbps Each frame contains multiple OFDM symbols Matthew B. Shoemake, WiQuest

5 Frequency-Domain Inputs
September 2004 Encoder Scrambler 64-State BCC Puncturer 3-Stage Interleaver QPSK Mapper IFFT DAC Time Frequency Kernel NULL # - 61 -2 1 2 127 126 62 63 64 67 65 66 Frequency-Domain Inputs Time-Domain Outputs D Output Data A Output Data B Output Data C Error Control Coding Standard 64-State Binary Convolutional Code Punctured to achieve various data rates IFFT 128 points 100 data, 12 pilot, 10 guard, 6 null Matthew B. Shoemake, WiQuest

6 Packet at Baseband Each OFDM symbol is 312.5 ns long containing:
September 2004 Packet at Baseband Each OFDM symbol is ns long containing: ns null cyclic prefix ns of data transmission - 9.5 ns guard Number of OFDM Symbols: - Packet sync: 21 - Frame sync: 3 - Channel estimation: 6 - PLCP header: 12 - Payload: Variable (54 at left) Matthew B. Shoemake, WiQuest

7 September 2004 Spectrum DAC converter rate = 528 MHz Tone width = MHz Instantaneous Bandwidth ≈ 123 * MHz = 511 MHz As characteristic of OFDM systems, signal rolloff is sharp yielding excellent adjacent channel interference characteristics Matthew B. Shoemake, WiQuest

8 Band Groups Spectrum is divided into 14 bands
September 2004 Band Groups Spectrum is divided into 14 bands Bands are spaced at 528 MHz Five band groups are defined Enables structured expansion f 3432 MHz 3960 4488 Band #1 #2 #3 Each Time Frequency Code (TFC) corresponds to a Logic Channel Logical Channels enable Simultaneously Operating Piconets (SOPS) Four SOPS are enabled on Band Group1 Matthew B. Shoemake, WiQuest

9 AWGN Performance Noise Bandwidth ≈ 500 MHz Noise Floor ≈ -87 dBm
September 2004 AWGN Performance Noise Bandwidth ≈ 500 MHz Noise Floor ≈ -87 dBm Matthew B. Shoemake, WiQuest

10 Enhancements to Proposal
September 2004 Enhancements to Proposal Changes made since July 2004: 55 Mbps changed to 53 1/3 Mbps Lower PAR Channel Estimation sequence included Mapping of data tones onto guard tones Matthew B. Shoemake, WiQuest

11 Features Regulatory Robustness
September 2004 Features Regulatory Meets FCC requirement for 500 MHz minimum bandwidth Maximally flexible for regulatory expansion due spectral sculpting capability Robustness Time Frequency Coding provides frequency diversity gain and robustness to interference Matthew B. Shoemake, WiQuest

12 System Performance (3-band)
September 2004 System Performance (3-band) The distance at which the Multi-band OFDM system can achieve a PER of 8% for a 90% link success probability is tabulated below: Includes losses due to front-end filtering, clipping at the DAC, ADC degradation, multi-path degradation, channel estimation, carrier tracking, packet acquisition, no attenuation on the guard tones, etc. Range AWGN LOS: 0 – 4 m CM1 NLOS: 0 – 4 m CM2 NLOS: 4 – 10 m CM3 RMS Delay Spread: 25 ns CM4 110 Mbps 21.4 m 12.0 m 11.5 m 10.9 m 200 Mbps 14.6 m 7.4 m 7.1 m 7.5 m 6.6 m 480 Mbps 9.3 m 3.2 m 3.0 m N/A Matthew B. Shoemake, WiQuest

13 Signal Robustness/Coexistence
September 2004 Signal Robustness/Coexistence Assumption: Received signal is 6 dB above sensitivity. Values listed below are the required distance or power level needed to obtain a PER  8% for a 1024 byte packet at 110 Mb/s and operating in Band Group #1. Coexistence with IEEE b and Bluetooth is relatively straightforward because they are out-of-band. Multi-band OFDM is also coexistence friendly with both GSM and WCDMA. MB-OFDM has the ability to tightly control OOB emissions. Interferer Value IEEE 2.4 GHz dint  0.2 meter IEEE 5.3 GHz Modulated interferer SIR  -9.0 dB Tone interferer SIR  -7.9 dB Matthew B. Shoemake, WiQuest

14 PHY-SAP Throughput Assumptions:
September 2004 PHY-SAP Throughput Assumptions: MPDU (MAC frame body + FCS) length is 1024 bytes. SIFS = 10 ms. MIFS = 2 ms. MPDU (MAC frame body + FCS) length is 4024 bytes. Number of frames 110 Mb/s 200 Mb/s 480 Mb/s 1 Mode 1: 80.4 Mb/s Mode 1: Mb/s Mode 1: Mb/s 5 Mode 1: 88.7 Mb/s Mode 1: Mb/s Mode 1: Mb/s Number of frames 110 Mb/s 200 Mb/s 480 Mb/s 1 Mode 1: 98.5 Mb/s Mode 1: Mb/s Mode 1: Mb/s 5 Mode 1: Mb/s Mode 1: Mb/s Mode 1: Mb/s Matthew B. Shoemake, WiQuest

15 PHY Complexity Unit manufacturing cost (selected information):
September 2004 PHY Complexity Unit manufacturing cost (selected information): Process: CMOS 90 nm technology node in 2005. CMOS 90 nm production will be available from all major SC foundries by early 2004. Die size for the PHY (RF+baseband) operating in Band Group #1: Active CMOS power consumption for the PHY (RF+baseband) operating in Band Group #1 : Process Complete Analog* Complete Digital 90 nm 3.0 mm2 1.9 mm2 130 nm 3.3 mm2 3.8 mm2 * Analog Component area. Process TX (55 Mb/s) TX (110, 200 Mb/s) RX (55 Mb/s) RX (110 Mb/s) RX (200 Mb/s) 90 nm 85 mW 128 mW 147 mW 155 mW 169 mW 130 nm 104 mW 156 mW 192 mW 205 mW 227 mW Matthew B. Shoemake, WiQuest

16 September 2004 MB-OFDM Support MultiBand OFDM has an unprecedented level of support and serves the needs of: Major Personal Computer manufacturers Major Mobile Phone manufacturers Major Consumer Electronics manufacturers Major Software companies Component manufacturers Test equipment manufacturers Matthew B. Shoemake, WiQuest

17 MB-OFDM Advantages MB-OFDM   Piconets Supported 16
September 2004 MB-OFDM Advantages MB-OFDM Piconets Supported 16 Extendable to high rate/longer range Yes, via industry standard techniques Coding 64-State Binary Convolutional Code Regulatory Flexibility High Clear Channel Assessment Robust, Non-preamble-based Mechanism Multipath Immunity Inherent from OFDM Spectral Sculpting Industry Support  WiMedia Support Exploits Moore’s Law Matthew B. Shoemake, WiQuest

18 MB-OFDM Submissions (1 of 2)
September 2004 MB-OFDM Submissions (1 of 2) MB-OFDM Update and Overview, Matthew B. Shoemake (WiQuest), doc MB-OFDM Specification, Anuj Batra (Texas Instruments), et al., doc Market Needs for a High-Speed WPAN Specification, Robert Huang (Sony) and Mark Fidler (Hewlett Packard), doc MB-OFDM for Mobile Handhelds, Pekka A. Ranta (Nokia), doc In-band Interference Properties of MB-OFDM, Charles Razzell (Philips), doc Matthew B. Shoemake, WiQuest

19 MB-OFDM Submissions (2 of 2)
September 2004 MB-OFDM Submissions (2 of 2) Spectral Sculpting and Future-Ready UWB, David Leeper (Intel), Hirohisa Yamaguchi (TI), et al., doc CCA Algorithm Proposal for MB-OFDM, Charles Razzell, doc What is Fundamental?, Anuj Batra, et al., doc Time to market for MB-OFDM, Roberto Aiello (Staccato), Eric Broockman (Alereon) and David Yaish (Wisair), doc Matthew B. Shoemake, WiQuest

20 Summary Inherent Multipath Capture and Immunity
September 2004 Summary Inherent Multipath Capture and Immunity High Performance Error Control Range/rate extendable Spectral Sculpting for Global Expandability Superior channelization Low Cost and Power Consumption Matthew B. Shoemake, WiQuest

21 September 2004 Select References , MultiBand OFDM September 2003 presentation, Anuj Batra , MultiBand OFDM Physical Layer Presentation, Roberto Aiello and Anand Dabak , MultiBand OFDM January 2004 Presentation, Roberto Aiello, Gadi Shor and Naiel Askar , C-Band Satellite Interference Measurements TDK RF Test Range, Evan Green, Gerald Rogerson and Bud Nation , Coexistence MultiBand OFDM and IEEE a Interference Measurements, Dave Magee, Mike DiRenzo, Jaiganesh Balakrishnan, Anuj Batra , Video of MB-OFDM, DS-UWB and AWGN Interference Test, Pat Carson and Evan Green Matthew B. Shoemake, WiQuest


Download ppt "September 2004 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [MultiBand OFDM Update and Overview] Date."

Similar presentations


Ads by Google