Download presentation
Presentation is loading. Please wait.
1
Powerpoint Presentation, ECM22
G. Kaupp, M. R. Naimi-Jamal Powerpoint Presentation, ECM22 Budapest, August 26-31, 2004
2
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
3
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
4
loading: FN = k h3/2 k [µN/nm3/2] = indentation coefficient
Al-Berkovich loading: FN = k h3/ k [µN/nm3/2] = indentation coefficient G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
5
The relation of normal force and normal displacement
FN = k·h3/ (k [µN/nm3/2] = indentation coefficient) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
6
Crystalline SiO2 and SrTiO3
trigonal a-quartz monoclinic coesite (>2.2 GPa) tetragonal stishovite (>8.2 GPa) cubic SrTiO3(Pm-3m); tetragonal (I4/mcm) ? G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
7
Anthracene, coefficients and work of indentation
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
8
Isotropic and anisotropic indentation responce
Far-reaching phenomena with crystals G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
9
Face anisotropy in nanoindentations
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
10
Appearances of nanoscratches by AFM
Z range 50 nm ramp experiment constant normal force G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
11
The relation of lateral force and (fixed) normal force
FL = K·FN3/ (K = scratch coefficient [N-1/2]) The value for the lateral force gives the scratch work [µNµm] for 1 µm scratch length Fused quartz and cube corner indentation tip, edge in front (a) (b) (c) normal force (µN) (normal force)1.5 (µN1.5) (normal force)2 (µN2) Linear plot through the origin only with exponent 1.5 (not 1 or 2) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
12
The relation of lateral force and (fixed) normal force
SrTiO3 (100), 0°, cube corner edge in front 100 200 300 20000 40000 60000 (normal force) 1.5 (µN ) lateral force (µN) y 1 = 0,0047x + 3,8443 2 = 0,0071x ,218 (a) (b) y = 0,0048x + 13,571 40 80 120 160 10000 30000 (c) y = 0,0001x + 33,419 250000 500000 750000 (d) invalid (normal force)1.5 (µN1.5) acceptable exponent 1.5 (not 1 or 2) the steep line in (b) corresponds to phase transformed SrTiO3 G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
13
G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Angular and facial dependence of specific scratch work on strontium titanate at different normal loads (WSc, spec = FL.1 [µNµm]) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
14
Angular dependence of specific scratch work on (1-100) of a-quartz and crystal packing
spec.WSc = FL.1 [µNµm] = work for 1 µm scratch length of the indented tip (1-100), scratch work per µm scratch length (FN=1482 µN): Angle µNµm 90° 45° 0° c-direction: alternation of nm Si-Si rows; the other directions are less distant and the skew (10-11) cleavage plane is cutting in c-direction G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
15
Molecular migrations under (110) of thiohydantoin
(b) 90° (c) 180° (d) 270° (P21/c) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
16
Reason for the orientational specifity on (110) of thiohydantoin
cleavage planes between steep (66°) monolayers Geometric model for the understanding of the marked anisotropies upon scratching over skew cleavage planes in four orthogonal directions In all directions: FL = K.FN3/2 is valid G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
17
Nanoscratching of anthracene on (110)
(110) on top G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
18
Nanoscratching on the layers
(001) on top anthracene ramp nanoscratching at µN on (001) G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
19
Tetraphenylethene (P21) on (10-1)
Poor vertical (010) cleavage planes between monolayers of bulky molecules G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
20
Nanoscratching along the polar axis of ninhydrin
edge in front 180° (P21) 180° side in front 180° Cube corner scratches on ninhydrin (110) along the polar axis G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
21
Thiourea, anisotropic nanoscratching on (100)
b a (100) c (image rotated by 10° around x and y) (Pbnm) a) along [010] (b) b) along [001] (c) ramp nanoscratching at µN G. Kaupp, M. R. Naimi-Jamal, ECM22, Budapest, August 26-31, 2004
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.