Download presentation
Presentation is loading. Please wait.
Published byἈστάρτη Μανωλάς Modified over 6 years ago
1
Multiplicity Fluctuations in Hadron-Resonance Gas
Viktor Begun Bogolyubov Institute for Theoretical Physics Kiev, Ukraine Viktor Begun
2
Multiplicity fluctuations
Scaled variance - Event-by-event - Statistical averaging: GCE, CE, MCE Non-relativistic case (discussed in textbooks): Relativistic Gas: !!! Viktor Begun
3
The beginning: CE vs GCE
grand canonical limit They are different! V.B., M.Gaździcki, M.Gorenstein, O.Zozulya, Phys. Rev. C70, (2004) canonical limit Viktor Begun
4
Particle number distributions
g.m.c.e. Viktor Begun
5
Some recent publications on fluctuations in GCE, CE and MCE:
V.B., M.Gorenstein, M.Hauer, V.Konchakovski, O.Zozulya, nucl-th\ , Phys. Rev. C, in print. G. Torrieri, nucl-th/ V.B., and M. I. Gorenstein, Phys. Rev. C 73, (2006) G. Torrieri, S. Jeon and J. Rafelski, AIP Conf. Proc. 828, 55 (2006) G. Torrieri, S. Jeon and J. Rafelski, nucl-th/ G. Torrieri, S. Jeon and J. Rafelski, Rom. Rep. Phys. 58, 031 (2006) M. Gazdzicki, J. Phys. Conf. Ser. 27, 154 (2005) F. Becattini, A. Keranen, L. Ferroni and T. Gabbriellini, Phys. Rev. C 72, (2005) V.B., M. I. Gorenstein, A. P. Kostyuk and O. S. Zozulya, J.Phys.G32, (2006) G. Torrieri, S. Jeon and J. Rafelski, nucl-th/ J. Cleymans, K. Redlich and L. Turko, J. Phys. G 31, 1421 (2005) J. Cleymans, K. Redlich and L. Turko, Phys. Rev. C 71, (2005) V.B., M. I. Gorenstein and O. S. Zozulya, Phys. Rev. C 72, (2005) A. Z. Mekjian, Nucl. Phys. A 761, 132 (2005) A. Keranen, F. Becattini, V.B., M. I. Gorenstein, O.S. Zozulya, J. Phys. G, (2005) V.B., M. I. Gorenstein, A. P. Kostyuk and O. S. Zozulya, Phys. Rev. C 71, (2005) F. Becattini and L. Ferroni, Eur. Phys. J. C 38, 225 (2004) Viktor Begun
6
Effect of Resonance Decays
GCE S.Jeon, V.Koch, Phys.Rev.Lett. 83 (1999) V.B., M.Gorenstein, M.Hauer, V.Konchakovski, O.Zozulya, nucl-th\ CE, MCE Viktor Begun
7
Line of the chemical freeze-out
<E>/<N> = 1GeV → T(μB) S = 0 → μS Q/B = 0.4 → μQ THERMUS — S. Wheaton, J. Cleymans, J. Phys. G (2005) J. Cleymans and K. Redlich, Phys. Rev. Lett. 81, 5284 (1998) J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, (2006) F. Becattini, J. Manninen, M. Ga´zdzicki, Phys. Rev. C 73, (2006) Viktor Begun
8
The prediction of CE hadron gas model
< 1 ?! Small acceptance Resonance decays V.B., M.Gorenstein, M.Hauer, V.Konchakovski, O.Zozulya, nucl-th\ Viktor Begun
9
< 1 !!! See talk of B. Lungwitz, Correlations and Fluctuations
in Relativistic Nuclear Collisions, Florence, July Viktor Begun
10
Summary Scaled variances are different in different ensembles,
even in thermodynamic limit: ( ωCE(Q=0) = 1/2, ωGMCE(m=0) = 1/4, ωMCE(m=0,Q=0) = 1/8 ) The analytical formulae for the resonance decay contribution in CE has been found The prediction for the energy dependence of the scaled variances in the most central Pb+Pb collisions has been done A comparison of the statistical model for hadron-resonance gas in CE with NA49 data was discussed GCE is not valid for scaled variances, even for “small” part of the system! Viktor Begun
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.