Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trig Graphs And equations Revision A2.

Similar presentations


Presentation on theme: "Trig Graphs And equations Revision A2."β€” Presentation transcript:

1 Trig Graphs And equations Revision A2

2 sin πœƒ =βˆ’ sin (βˆ’πœƒ) sin πœƒ = sin (180βˆ’πœƒ) π‘π‘œπ‘  πœƒ = π‘π‘œs (βˆ’πœƒ)
Radians These are the Trigonometric graphs, but with radians instead… y y = sinΞΈ sin πœƒ =βˆ’ sin (βˆ’πœƒ) sin πœƒ = sin (180βˆ’πœƒ) cos πœƒ = cos (360βˆ’πœƒ) π‘π‘œπ‘  πœƒ = π‘π‘œs (βˆ’πœƒ) tan πœƒ =βˆ’ tan (βˆ’πœƒ) tan πœƒ = tan (πœƒ+180) Properties of the graphs Can you put them in words? 1 ΞΈ -360ΒΊ -2Ο€ -270ΒΊ -3Ο€ 2 -180ΒΊ -Ο€ -90ΒΊ -Ο€ 2 90ΒΊ 180ΒΊ Ο€ 3Ο€ 2 270ΒΊ 360ΒΊ Ο€ 2 2Ο€ -1 y y = cosΞΈ 1 ΞΈ -360ΒΊ -2Ο€ -270ΒΊ -3Ο€ 2 -180ΒΊ -Ο€ -90ΒΊ -Ο€ 2 90ΒΊ Ο€ 2 180ΒΊ Ο€ 3Ο€ 2 270ΒΊ 360ΒΊ 2Ο€ -1 y = tanΞΈ 1 ΞΈ -360ΒΊ -2Ο€ -270ΒΊ -3Ο€ 2 -180ΒΊ -Ο€ -90ΒΊ -Ο€ 2 Ο€ 2 90ΒΊ 180ΒΊ Ο€ 270ΒΊ 3Ο€ 2 360ΒΊ 2Ο€ -1

3 Maxima/Minima at (90,1) and (270,-1) (and every 180 from then)
π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ π‘π‘œπ‘‘πœƒ= 1 π‘‘π‘Žπ‘›πœƒ Reciprocal graphs These are the Reciprocal Trigonometric graphs 1 y = SinΞΈ 90 180 270 360 -1 Maxima/Minima at (90,1) and (270,-1) (and every 180 from then) 1 90 180 270 360 -1 Asymptotes at 0, 180, 360 (and every 180Β° from then) y = CosecΞΈ

4 Maxima/Minima at (0,1) (180,-1) and (360,1) (and every 180 from then)
π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ π‘π‘œπ‘‘πœƒ= 1 π‘‘π‘Žπ‘›πœƒ Reciprocal graphs These are the Reciprocal Trigonometric graphs 1 y = CosΞΈ 90 180 270 360 -1 Maxima/Minima at (0,1) (180,-1) and (360,1) (and every 180 from then) 1 90 180 270 360 -1 Asymptotes at 90 and 270 (and every 180Β° from then) y = SecΞΈ

5 π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ
π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ π‘π‘œπ‘‘πœƒ= 1 π‘‘π‘Žπ‘›πœƒ Reciprocal graphs These are the Reciprocal Trigonometric graphs y = TanΞΈ 90 180 270 360 Asymptotes at 0, 180 and 360 (and every 180Β° from then) 90 180 270 360 y = CotΞΈ

6 π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ
Trig Identities Can you write ten useful Trig identities π‘π‘œπ‘ π‘’π‘πœƒ= 1 π‘ π‘–π‘›πœƒ π‘ π‘’π‘πœƒ= 1 π‘π‘œπ‘ πœƒ π‘π‘œπ‘‘πœƒ= 1 π‘‘π‘Žπ‘›πœƒ π‘Ž 2 = 𝑏 2 + 𝑐 2 βˆ’2𝑏𝑐 cos 𝐴 sin 𝐴 π‘Ž = sin 𝐡 𝑏 𝑠𝑖𝑛 2 π‘₯=1βˆ’ π‘π‘œπ‘  2 π‘₯ π‘π‘œπ‘  2 π‘₯=1βˆ’ 𝑠𝑖𝑛 2 π‘₯

7 Trig Identities Can you write ten useful Trig identities
Formula booklet

8 A. Solve, for 0 ≀ x < 2Ο€, 2 cot (π‘₯βˆ’ πœ‹ 3 ) =5⁑
Give your answers to one decimal place. (Solutions based entirely on graphical or numerical methods are not acceptable.) (5)

9 A. Solve, for 0 ≀ x < 2Ο€, 2 cot (π‘₯βˆ’ πœ‹ 3 ) =5⁑
Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (4) SOLUTION and MARKSCHEME cot π‘₯βˆ’ πœ‹ 3 = 5 2 tan π‘₯βˆ’ πœ‹ 3 = 2 5 𝐡1 π‘₯βˆ’ πœ‹ 3 = gives π‘₯=1.43 𝑀1 𝐴1 π‘“π‘œπ‘Ÿ π‘œπ‘›π‘’ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ π‘₯βˆ’ πœ‹ 3 =0.381, ,, … gives π‘₯=4.57 𝐴1 π‘“π‘œπ‘Ÿ 2𝑛𝑑 π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ

10 Give your answers to two decimal places
B. Solve, for 0<π‘₯< 3πœ‹ 2 , π‘π‘œπ‘‘ 2 π‘₯βˆ’ cot π‘₯ + π‘π‘œπ‘ π‘’π‘ 2 π‘₯=4 Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (5)

11 Give your answers to two decimal places
B. Solve, for 0<π‘₯< 3πœ‹ 2 , π‘π‘œπ‘‘ 2 π‘₯βˆ’ cot π‘₯ + π‘π‘œπ‘ π‘’π‘ 2 π‘₯=4 Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (5) SOLUTION and MARKSCHEME π‘π‘œπ‘‘ 2 π‘₯βˆ’ cot π‘₯ + 1+ π‘π‘œπ‘‘ 2 π‘₯ =4 𝐡1 𝑒𝑠𝑒 𝑖𝑑𝑒𝑛𝑑𝑖𝑑𝑦 π‘‘π‘œ π‘šπ‘Žπ‘˜π‘’ π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ 2 π‘π‘œπ‘‘ 2 π‘₯ βˆ’ cot π‘₯ βˆ’ 3 = 0 2 cot π‘₯ βˆ’3 cot π‘₯ +1 = 0 𝑀1 π‘ π‘œπ‘™π‘£π‘–π‘›π‘” π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘–π‘ 𝐴1 𝐴1 π‘’π‘Žπ‘β„Ž π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ cot π‘₯ = rearrange to tπ‘Žπ‘› π‘₯ = gives π‘₯=0.588, cot π‘₯ =βˆ’ rearrange to tπ‘Žπ‘› π‘₯ =βˆ’1 gives π‘₯= 3πœ‹ 4 π‘œπ‘›π‘™π‘¦ 𝐴1 π‘“π‘œπ‘Ÿ 3π‘Ÿπ‘‘ π‘Žπ‘›π‘ π‘€π‘’π‘Ÿ

12 END


Download ppt "Trig Graphs And equations Revision A2."

Similar presentations


Ads by Google