Download presentation
Presentation is loading. Please wait.
1
Trig Graphs And equations Revision A2
2
sin π =β sin (βπ) sin π = sin (180βπ) πππ π = ππs (βπ)
Radians These are the Trigonometric graphs, but with radians insteadβ¦ y y = sinΞΈ sin π =β sin (βπ) sin π = sin (180βπ) cos π = cos (360βπ) πππ π = ππs (βπ) tan π =β tan (βπ) tan π = tan (π+180) Properties of the graphs Can you put them in words? 1 ΞΈ -360ΒΊ -2Ο -270ΒΊ -3Ο 2 -180ΒΊ -Ο -90ΒΊ -Ο 2 90ΒΊ 180ΒΊ Ο 3Ο 2 270ΒΊ 360ΒΊ Ο 2 2Ο -1 y y = cosΞΈ 1 ΞΈ -360ΒΊ -2Ο -270ΒΊ -3Ο 2 -180ΒΊ -Ο -90ΒΊ -Ο 2 90ΒΊ Ο 2 180ΒΊ Ο 3Ο 2 270ΒΊ 360ΒΊ 2Ο -1 y = tanΞΈ 1 ΞΈ -360ΒΊ -2Ο -270ΒΊ -3Ο 2 -180ΒΊ -Ο -90ΒΊ -Ο 2 Ο 2 90ΒΊ 180ΒΊ Ο 270ΒΊ 3Ο 2 360ΒΊ 2Ο -1
3
Maxima/Minima at (90,1) and (270,-1) (and every 180 from then)
πππ πππ= 1 π πππ π πππ= 1 πππ π πππ‘π= 1 π‘πππ Reciprocal graphs These are the Reciprocal Trigonometric graphs 1 y = SinΞΈ 90 180 270 360 -1 Maxima/Minima at (90,1) and (270,-1) (and every 180 from then) 1 90 180 270 360 -1 Asymptotes at 0, 180, 360 (and every 180Β° from then) y = CosecΞΈ
4
Maxima/Minima at (0,1) (180,-1) and (360,1) (and every 180 from then)
πππ πππ= 1 π πππ π πππ= 1 πππ π πππ‘π= 1 π‘πππ Reciprocal graphs These are the Reciprocal Trigonometric graphs 1 y = CosΞΈ 90 180 270 360 -1 Maxima/Minima at (0,1) (180,-1) and (360,1) (and every 180 from then) 1 90 180 270 360 -1 Asymptotes at 90 and 270 (and every 180Β° from then) y = SecΞΈ
5
πππ πππ= 1 π πππ π πππ= 1 πππ π
πππ πππ= 1 π πππ π πππ= 1 πππ π πππ‘π= 1 π‘πππ Reciprocal graphs These are the Reciprocal Trigonometric graphs y = TanΞΈ 90 180 270 360 Asymptotes at 0, 180 and 360 (and every 180Β° from then) 90 180 270 360 y = CotΞΈ
6
πππ πππ= 1 π πππ π πππ= 1 πππ π
Trig Identities Can you write ten useful Trig identities πππ πππ= 1 π πππ π πππ= 1 πππ π πππ‘π= 1 π‘πππ π 2 = π 2 + π 2 β2ππ cos π΄ sin π΄ π = sin π΅ π π ππ 2 π₯=1β πππ 2 π₯ πππ 2 π₯=1β π ππ 2 π₯
7
Trig Identities Can you write ten useful Trig identities
Formula booklet
8
A. Solve, for 0 β€ x < 2Ο, 2 cot (π₯β π 3 ) =5β‘
Give your answers to one decimal place. (Solutions based entirely on graphical or numerical methods are not acceptable.) (5)
9
A. Solve, for 0 β€ x < 2Ο, 2 cot (π₯β π 3 ) =5β‘
Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (4) SOLUTION and MARKSCHEME cot π₯β π 3 = 5 2 tan π₯β π 3 = 2 5 π΅1 π₯β π 3 = gives π₯=1.43 π1 π΄1 πππ πππ πππ π€ππ π₯β π 3 =0.381, ,, β¦ gives π₯=4.57 π΄1 πππ 2ππ πππ π€ππ
10
Give your answers to two decimal places
B. Solve, for 0<π₯< 3π 2 , πππ‘ 2 π₯β cot π₯ + πππ ππ 2 π₯=4 Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (5)
11
Give your answers to two decimal places
B. Solve, for 0<π₯< 3π 2 , πππ‘ 2 π₯β cot π₯ + πππ ππ 2 π₯=4 Give your answers to two decimal places (Solutions based entirely on graphical or numerical methods are not acceptable.) (5) SOLUTION and MARKSCHEME πππ‘ 2 π₯β cot π₯ + 1+ πππ‘ 2 π₯ =4 π΅1 π’π π πππππ‘ππ‘π¦ π‘π ππππ ππ’πππππ‘ππ 2 πππ‘ 2 π₯ β cot π₯ β 3 = 0 2 cot π₯ β3 cot π₯ +1 = 0 π1 π πππ£πππ ππ’πππππ‘ππ π΄1 π΄1 πππβ πππ π€ππ cot π₯ = rearrange to tππ π₯ = gives π₯=0.588, cot π₯ =β rearrange to tππ π₯ =β1 gives π₯= 3π 4 ππππ¦ π΄1 πππ 3ππ πππ π€ππ
12
END
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.