Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mission Status: September 06, 2012

Similar presentations


Presentation on theme: "Mission Status: September 06, 2012"— Presentation transcript:

1 Mission Status: September 06, 2012

2 A Rover’s Journey Begins
Tracks from the first drives of NASA's Curiosity rover are visible in this image captured by the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The rover is seen where the tracks end. The image's color has been enhanced to show the surface details better. The two marks seen near the site where the rover landed formed when reddish surface dust was blown away by the rover's descent stage, revealing darker basaltic sands underneath. Similarly, the tracks appear darker where the rover's wheels disturbed the top layer of dust. Observing the tracks over time will provide information on how the surface changes as dust is deposited and eroded.   The full image for these observations can be seen at Can see touchdown points, can see two scour marks, can see white deck of rover

3 Relics of Rover's Landing
This color view of the parachute and back shell that helped deliver NASA's Curiosity rover to the surface of the Red Planet was taken by the High-Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The area where the back shell impacted the surface is darker because lighter-colored material on the surface was kicked up and displaced. The full image for these observations can be seen at . HiRISE is one of six instruments on NASA's Mars Reconnaissance Orbiter. The University of Arizona, Tucson, operates the orbiter's HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the spacecraft. Image credit: NASA/JPL-Caltech/Univ. of Arizona

4 Curiosity Traverse Map
(through Sol 29) Curiosity Traverse Map through Sol 29 This map shows the route driven by NASA's Mars rover Curiosity through the 29th Martian day, or sol, of the rover's mission on Mars (Sept. 4, 2012). The route starts where the Mars Science Laboratory spacecraft placed the rover, a site subsequently named Bradbury Landing. The line extending toward the right (eastward) from Bradbury Landing is the rover's path. Numbering of the dots along the line indicate the sol numbers of each drive. North is up. The scale bar is 200 meters (656 feet). By Sol 29, Curiosity had driven at total of 358 feet (109 meters). At the location reached by the Sol 29 drive, the rover began several sols of arm characterization activities. The Glenelg area farther east is the mission's first major science destination, selected as likely to offer a good target for Curiosity's first analysis of powder collected by drilling into a rock. The image used for the map is from an observation of the landing site by the High Resolution Imaging Science Experiment (HiRISE) instrument on NASA's Mars Reconnaissance Orbiter.

5 Curiosity’s Location Sol 24
Curiosity's Location During Arm Checkouts This scene shows the surroundings of the location where NASA Mars rover Curiosity arrived on the 29th Martian day, or sol, of the rover's mission on Mars (Sept. 4, 2012). It is a mosaic of images taken by Curiosity's Navigation Camera (Navcam) following the Sol 29 drive of 100 feet (30.5 meters). Tracks from the drive are visible in the image. For scale, Curiosity leaves parallel tracks about 9 feet (2.7 meters) apart. At this location on Sol 30, Curiosity began a series of activities to test and characterize the rover's robotic arm and the tools on the arm. The panorama is centered to the north-northeast, with south-southwest at both ends. Image credit: NASA/JPL-Caltech

6 Curiosity's Robotic Arm
This engineering drawing shows the location of the arm on NASA's Curiosity rover, in addition to the arm's turret, which holds two instruments and three tools. The arm places and holds turret-mounted tools on rock and soil targets. It also manipulates the sample-processing mechanisms on the 66-pound (30-kilogram) turret. The arm has five degrees of freedom of movement provided by rotary actuators known as the shoulder azimuth joint, shoulder elevation joint, elbow joint, wrist joint and turret joint. Image credit: NASA/JPL-Caltech

7 Curiosity's Work Bench Curiosity's Work Bench
This engineering drawing shows various components needed to support tools at the end of the arm on NASA's Curiosity rover, including: calibration targets for helping instruments set their baseline levels; spare bits for the rover's drill; a sample "playground" that gives the rover a place to drop off processed samples for observation by the APXS and MAHLI instruments; three inlet covers, which protect the SAM and CheMin instruments from atmospheric dust; and a set of five "organic check material" canisters, which provide a known chemical makeup blank that can be drilled and provided to SAM as a calibration material.

8 Tools at Curiosity’s Fingertips
This engineering drawing shows the five devices that make up the turret at the end of the arm on NASA's Curiosity rover. These include: the drill for acquiring powdered samples from interiors of rocks; the Alpha Particle X-ray Spectrometer (APXS); the sample processing subsystem named Collection and Handling for Interior Martian Rock Analysis (CHIMRA), which includes a scoop that can scoop up lose dirt from the Martian surface; the Dust Removal Tool (DRT) and the Mars Hand Lens Imager (MAHLI). Image credit: NASA/JPL-Caltech

9 Flexing Curiosity’s Arm
This engineering drawing shows the arm on NASA's Curiosity's rover in its "ready- for-action" position, or "ready out" as engineers say, in addition to the position it assumes to drop off samples. Image credit: NASA/JPL-Caltech

10 Camera on Curiosity’s Arm
Camera on Curiosity's Arm as Seen by Camera on Mast The left eye of the Mast Camera (Mastcam) on NASA's Mars rover Curiosity took this image of the camera on the rover's arm, the Mars Hand Lens Imager (MAHLI), during the 30th Martian day, or sol, of the rover's mission on Mars (Sept. 5, 2012). MAHLI is one of the tools on a turret at the end of the rover's robotic arm. When this image was taken, the arm had raised the turret to about the same height as the camera on the mast. The Mastcam's left eye has a 34-millimeter focal length lens. The image shows that MAHLI has a thin film or coating of Martian dust on it. This dust accumulated during Curiosity's final descent to the Martian surface, as the Mars Science Laboratory spacecraft's descent stage (or sky crane) engines were disrupting the surface nearby. Effects of the dust were seen in the first image taken of Mars by MAHLI, on the day after landing ( The MAHLI lens is protected from dust accumulation by a transparent dust cover. If the dust cover were clean, the images would appear as clear as if the cover were open. The reddish circle near the center of the Mastcam Sol 30 image is the window of MAHLI's dust cover, with a diameter a little less than a soda can's diameter. Inside the lens, each of the nine glass lens elements and the front sapphire window are bonded or cemented in place by a red-colored silicone RTV (room temperature vulcanizing) material. This is a space-qualified "glue" that holds the lens elements in place. When the MAHLI is viewed from certain angles, this material gives one the impression that the inside of the lens is red. The mechanism at the right in this image is Curiosity's dust removal tool, a motorized wire brush. Image credit: NASA/JPL-Caltech/MSSS Image credit: NASA/JPL-Caltech


Download ppt "Mission Status: September 06, 2012"

Similar presentations


Ads by Google