Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex numbers nth roots.

Similar presentations


Presentation on theme: "Complex numbers nth roots."β€” Presentation transcript:

1 Complex numbers nth roots

2 FP2: Complex numbers : nth roots
KUS objectives BAT use De Moivres theorem to find the nth roots of a complex number Starter: write in exponential form 𝑧 1 =7 2 𝑒 πœ‹π‘– 4 𝑧 1 =7βˆ’7𝑖 𝑧 2 =2 cos 3πœ‹ 4 +𝑖 sin 11πœ‹ 4 𝑧 2 =2 𝑒 3πœ‹π‘– 4 𝑧 3 = 3 cos πœ‹ 3 +𝑖 sin 7πœ‹ 3 𝑧 3 = 3 𝑒 βˆ’ πœ‹π‘– 3

3 Then: 𝑧=π‘Ÿ cos⁑(πœƒ+2π‘˜πœ‹)+𝑖𝑠𝑖𝑛(πœƒ+2π‘˜πœ‹) where k is an integer
Notes You already know how to find real roots of a number, but now we need to find both real roots and imaginary roots! We need to apply the following results If: 𝑧=π‘Ÿ π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ Then: 𝑧=π‘Ÿ cos⁑(πœƒ+2π‘˜πœ‹)+𝑖𝑠𝑖𝑛(πœƒ+2π‘˜πœ‹) where k is an integer This is because we can add multiples of 2Ο€ to the argument as it will end up in the same place (2Ο€ = 360ΒΊ) 2) De Moivre’s theorem π‘Ÿ(π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ) 𝑛 = π‘Ÿ 𝑛 π‘π‘œπ‘ π‘›πœƒ+π‘–π‘ π‘–π‘›π‘›πœƒ

4 k = 2 would cause the argument to be outside the range
WB 18 part1 a) Solve the equation z3 = 1 and b) represent your solutions on an Argand diagram c) Show that the three roots can be written as 1, 𝑀, π‘Žπ‘›π‘‘ 𝑀 2 where 1+𝑀+ 𝑀 2 =0 𝐼𝑓: 𝑧=π‘Ÿ π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ π‘‡β„Žπ‘’π‘›: 𝑧=π‘Ÿ cos⁑(πœƒ+2π‘˜πœ‹)+𝑖𝑠𝑖𝑛(πœƒ+2π‘˜πœ‹) π‘Ÿ(π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ) 𝑛 = π‘Ÿ 𝑛 π‘π‘œπ‘ π‘›πœƒ+π‘–π‘ π‘–π‘›π‘›πœƒ 1 x y π‘Ÿ=1 πœƒ=0 First you need to express z in the modulus-argument form. 𝑧 3 =1 π‘π‘œπ‘ 0+𝑖𝑠𝑖𝑛0 Now then find an expression for z in terms of k 𝑧 3 = cos⁑(0+2π‘˜πœ‹)+𝑖𝑠𝑖𝑛(0+2π‘˜πœ‹) We can then solve this to find the roots of the equation above 𝑧= cos 0+2π‘˜πœ‹ +𝑖𝑠𝑖𝑛(0+2π‘˜πœ‹) 1 3 𝑧= cos 0+2π‘˜πœ‹ 3 +𝑖𝑠𝑖𝑛 0+2π‘˜πœ‹ 3 k = 0 k = 1 k = -1 𝑧= π‘π‘œπ‘  2πœ‹ 3 +𝑖𝑠𝑖𝑛 2πœ‹ 3 𝑧= π‘π‘œπ‘  βˆ’ 2πœ‹ 3 +𝑖𝑠𝑖𝑛 βˆ’ 2πœ‹ 3 𝑧= π‘π‘œπ‘  0 +𝑖𝑠𝑖𝑛 0 𝑧=1 𝑧=βˆ’ 1 2 +𝑖 𝑧=βˆ’ 1 2 βˆ’π‘– TA DA! These are the roots of z3 = 1 k = 2 would cause the argument to be outside the range

5 WB 18 part2 Solve the equation z3 = 1 and represent your solutions on an Argand diagram
The values of k you choose should keep the argument within the range: -Ο€ < ΞΈ ≀ Ο€ βˆ’ 𝟏 𝟐 +π’Š πŸ‘ 𝟐 2 3 πœ‹ 𝟏 2 3 πœ‹ x 2 3 πœ‹ c) Show that the three roots can be written as 1, 𝑀, π‘Žπ‘›π‘‘ 𝑀 2 where 1+𝑀+ 𝑀 2 =0 βˆ’ 𝟏 𝟐 βˆ’π’Š πŸ‘ 𝟐 𝑀=βˆ’ 1 2 +𝑖 The solutions will all the same distance from the origin The angles between them will also be the same The sum of the roots is always equal to 0 SO the points make the vertices of a regular shape 𝑀 2 = βˆ’ 1 2 +𝑖 βˆ’ 1 2 +𝑖 𝑀 2 =βˆ’ 1 2 βˆ’π‘– QED 1+𝑀+ 𝑀 2 =1+ βˆ’ 1 2 +𝑖 βˆ’ 1 2 βˆ’π‘– =0 QED

6 In general solutions to 𝑧 4 =1 are
Notes In general solutions to 𝑧 4 =1 are 𝑧= cos 2π‘˜πœ‹ 𝑛 +𝑖 sin 2π‘˜πœ‹ 𝑛 for k = 1, 2, 3, …, n These are known as the nth roots of unity In exponential form 𝑧= 𝑒 2π‘˜πœ‹ 𝑛 𝑖 The nth roots are 1, 𝑀, 𝑀 2 , 𝑀 3 , … 𝑀 π‘›βˆ’1 and they form the vertices of a regular polygon Also 1+ 𝑀+ 𝑀 2 + 𝑀 3 + … + 𝑀 π‘›βˆ’1 =0

7 WB 19 part1 Solve the equation z4 - 2√3i = 2 Give your answers in both the modulus-argument and exponential forms. By rearranging… z4 = 2 + 2√3i πœƒ= π‘‘π‘Žπ‘› βˆ’ π‘Ÿ= r 2 ΞΈ x y 2√3 π‘Ÿ=4 πœƒ= πœ‹ 3 As before, use an Argand diagram to express the equation in the modulus-argument form 𝑧 4 =4 π‘π‘œπ‘  πœ‹ 3 +𝑖𝑠𝑖𝑛 πœ‹ 3 𝑧 4 =4 π‘π‘œπ‘  πœ‹ 3 +2π‘˜πœ‹ +𝑖𝑠𝑖𝑛 πœ‹ 3 +2π‘˜πœ‹ 𝑧= 4 π‘π‘œπ‘  πœ‹ 3 +2π‘˜πœ‹ +𝑖𝑠𝑖𝑛 πœ‹ 3 +2π‘˜πœ‹ 𝑧= π‘π‘œπ‘  πœ‹ 3 +2π‘˜πœ‹ 4 +𝑖𝑠𝑖𝑛 πœ‹ 3 +2π‘˜πœ‹ 4 𝑧= 2 π‘π‘œπ‘  πœ‹ 3 +2π‘˜πœ‹ 4 +𝑖𝑠𝑖𝑛 πœ‹ 3 +2π‘˜πœ‹ 4

8 𝑧= 2 𝑒 πœ‹ 12 𝑖 𝑧= 2 𝑒 7πœ‹ 12 𝑖 𝑧= 2 𝑒 βˆ’ 5πœ‹ 12 𝑖 𝑧= 2 𝑒 βˆ’ 11πœ‹ 12 𝑖
WB 19 part2 Solve the equation z4 - 2√3i = 2 Give your answers in both the modulus-argument and exponential forms. 𝑧= 2 π‘π‘œπ‘  πœ‹ 𝑖𝑠𝑖𝑛 πœ‹ 3 4 Solutions in the modulus-argument form 𝑧= 2 π‘π‘œπ‘  πœ‹ 12 +𝑖𝑠𝑖𝑛 πœ‹ 12 𝑧= 2 π‘π‘œπ‘  7πœ‹ 12 +𝑖𝑠𝑖𝑛 7πœ‹ 12 𝑧= 2 π‘π‘œπ‘  βˆ’ 5πœ‹ 12 +𝑖𝑠𝑖𝑛 βˆ’ 5πœ‹ 12 𝑧= 2 π‘π‘œπ‘  βˆ’ 11πœ‹ 12 +𝑖𝑠𝑖𝑛 βˆ’ 11πœ‹ 12 k = 0 𝑧= 2 π‘π‘œπ‘  πœ‹ 12 +𝑖𝑠𝑖𝑛 πœ‹ 12 𝑧= 2 π‘π‘œπ‘  πœ‹ 3 +2πœ‹ 4 +𝑖𝑠𝑖𝑛 πœ‹ 3 +2πœ‹ 4 k = 1 𝑧= 2 π‘π‘œπ‘  7πœ‹ 12 +𝑖𝑠𝑖𝑛 7πœ‹ 12 Solutions in the exponential form 𝑧= 2 𝑒 πœ‹ 12 𝑖 𝑧= 2 𝑒 7πœ‹ 12 𝑖 𝑧= 2 𝑒 βˆ’ 5πœ‹ 12 𝑖 𝑧= 2 𝑒 βˆ’ 11πœ‹ 12 𝑖 𝑧= 2 π‘π‘œπ‘  πœ‹ 3 βˆ’2πœ‹ 4 +𝑖𝑠𝑖𝑛 πœ‹ 3 βˆ’2πœ‹ 4 k = -1 𝑧= 2 π‘π‘œπ‘  βˆ’ 5πœ‹ 12 +𝑖𝑠𝑖𝑛 βˆ’ 5πœ‹ 12 𝑧= 2 π‘π‘œπ‘  πœ‹ 3 βˆ’2πœ‹ 4 +𝑖𝑠𝑖𝑛 πœ‹ 3 βˆ’2πœ‹ 4 k = -2 𝑧= 2 π‘π‘œπ‘  βˆ’ 11πœ‹ 12 +𝑖𝑠𝑖𝑛 βˆ’ 11πœ‹ 12

9 By rearranging… 𝑧 3 =βˆ’4 2 βˆ’4𝑖 2 π‘Ÿ 3 = 8 β†’ π‘Ÿ= 2 3π‘–πœƒ=βˆ’ 3πœ‹ 4 𝑖+2π‘˜πœ‹
WB 20 Solve the equation 𝑧 𝑖 2 =0 r 4 2 ΞΈ x y π‘Ÿ=8 πœƒ=βˆ’ 3πœ‹ 4 π‘Ÿ= βˆ’ βˆ’ πœƒ=βˆ’πœ‹βˆ’ π‘‘π‘Žπ‘› βˆ’1 1 By rearranging… 𝑧 3 =βˆ’4 2 βˆ’4𝑖 2 As before, use an Argand diagram to express the equation in exponential form 𝑧 3 =8 π‘π‘œπ‘  βˆ’ 3πœ‹ 4 +𝑖𝑠𝑖𝑛 βˆ’ 3πœ‹ 4 =8 𝑒 βˆ’ 3πœ‹ 4 𝑖 𝑧 3 =8 𝑒 βˆ’ 3πœ‹ 4 𝑖+2π‘˜πœ‹ π‘Ÿ 𝑒 π‘–πœƒ 3 = 8 𝑒 βˆ’ 3πœ‹ 4 𝑖+2π‘˜πœ‹ π‘Ÿ 3 𝑒 3π‘–πœƒ = 8 𝑒 βˆ’ 3πœ‹ 4 𝑖+2π‘˜πœ‹ Equating the modulus and argument on both sides gives πœƒ=βˆ’ πœ‹ gives 𝑧 1 =2 𝑒 βˆ’ πœ‹ 4 𝑖 k = 0 =2 π‘π‘œπ‘  βˆ’ πœ‹ 4 +𝑖𝑠𝑖𝑛 βˆ’ πœ‹ 4 =2 π‘π‘œπ‘  5πœ‹ 12 +𝑖𝑠𝑖𝑛 5πœ‹ 12 =2 π‘π‘œπ‘  βˆ’11πœ‹ 12 +𝑖𝑠𝑖𝑛 βˆ’11πœ‹ 12 π‘Ÿ 3 = β†’ π‘Ÿ= 2 3π‘–πœƒ=βˆ’ 3πœ‹ 4 𝑖+2π‘˜πœ‹ πœƒ= 5πœ‹ gives 𝑧 2 =2 𝑒 5πœ‹ 12 𝑖 k = 1 πœƒ=βˆ’ 11πœ‹ gives 𝑧 3 =2 𝑒 βˆ’ 11πœ‹ 12 𝑖 k = -1

10 Notes The nth roots of any complex number lie at the vertices of a regular polygon (n sides) with its centre at the origin We find the vertices by finding a single vertex and rotatin that point around the origin. This is equivalent to multiplying by the nth roots of unity to If 𝑧 1 is one root of the equation and 1, 𝑀, 𝑀 2 , 𝑀 3 , … 𝑀 π‘›βˆ’1 are the nth roots of unity Then the roots areΒ  𝑧 1 , 𝑧 1 𝑀, 𝑧 1 𝑀 2 , 𝑧 1 𝑀 3 , … , 𝑧 1 𝑀 π‘›βˆ’1

11 WB 21 The point 𝑃( 3 , 1) lies at one vertex of an equilateral triangle. The centre of the triangle is at the origin. Find the coordinates of the other vertices of the triangle Find the area of the triangle a) The cube roots of unity are 1, 𝑀, 𝑀 2 π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑀= 𝑒 2πœ‹π‘– 3 O x y 3 , 1 0, βˆ’2 βˆ’ 3 , 1 3 +𝑖=2 cos πœ‹ 6 +𝑖 sin πœ‹ 6 =2 𝑒 πœ‹π‘– 6 So the vertices are at 𝑧 1 , 𝑧 1 𝑀, 𝑧 1 𝑀 2 𝑧 1 =2 𝑒 πœ‹π‘– 6 𝑧 1 𝑀= 2 𝑒 πœ‹π‘– 𝑒 2πœ‹π‘– 3 =2 𝑒 5πœ‹π‘– 6 = βˆ’ 3 +𝑖 𝑧 1 𝑀 2 = 2 𝑒 πœ‹π‘– 𝑒 2πœ‹π‘– =2 𝑒 9πœ‹π‘– 6 =2 𝑒 βˆ’πœ‹π‘– 2 =βˆ’2𝑖 The coordinates are shown on the Argand diagram b) Area = 1 2 Γ—2 3 Γ—3=3 3

12 Summary points Make sure you get the statement of De Moivre’s theorem right De Moivre’s theorem says (π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ) 𝑛 = cos π‘›πœƒ+𝑖 sin π‘›πœƒ that for all integers n. It does not say, for example, that π‘π‘œπ‘  𝑛 πœƒ+i 𝑠𝑖𝑛 𝑛 πœƒ= cos π‘›πœƒ+𝑖 sin π‘›πœƒ for all integers n. This is just one of numerous possible silly errors. 2. Remember to deal with the modulus when using De Moivre’s theorem to find a power of a complex number For example in 3( cos πœ‹ 3 +𝑖𝑠𝑖𝑛 πœ‹ 3 ) 5 = cos 5πœ‹ 3 +𝑖 sin 5πœ‹ a common mistake is to forget to raise 3 to the power of 5. 3. Make sure that you don’t get the modulus of an nth root of a complex number wrong Remember that 𝑧 𝑛 = 𝑧 𝑛 , and this applies not just to integer values of n, but includes rational values of n, as when taking roots of z. 4. Make sure that you get the right number of nth roots of a complex number There should be exactly n of them. Remember two complex numbers which have the same moduli and arguments which differ by a multiple of 2πœ‹ are actually the same number

13 One thing to improve is –
KUS objectives BAT use De Moivres theorem to find the nth roots of a complex number self-assess One thing learned is – One thing to improve is –

14 END


Download ppt "Complex numbers nth roots."

Similar presentations


Ads by Google